BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2654144)

  • 1. Analysis of the growth factor requirements for stimulation of WI-38 cells after extended periods of density-dependent growth arrest.
    Owen TA; Soprano DR; Soprano KJ
    J Cell Physiol; 1989 May; 139(2):424-31. PubMed ID: 2654144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that stimulation of growth following long term density arrest of WI-38 cells proceeds via a pathway independent of protein kinase C and of cAMP-dependent protein kinase.
    Owen TA; Cosenza SC; Soprano DR; Soprano KJ
    Oncogene Res; 1989; 4(2):137-47. PubMed ID: 2497425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine protein kinase expression in long-term quiescent WI-38 cells following growth factor simulation.
    Korcz A; Soprano DR; Soprano KJ
    J Cell Biochem; 1995 Sep; 59(1):42-52. PubMed ID: 8530535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin-like growth factor-1 (IGF-1), insulin, and epidermal growth factor (EGF) are survival factors for density-inhibited, quiescent Balb/c-3T3 murine fibroblasts.
    Tamm I; Kikuchi T
    J Cell Physiol; 1990 Jun; 143(3):494-500. PubMed ID: 2193035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of DNA synthesis in dog thyrocytes in primary culture: synergistic effects of thyrotropin and cyclic AMP with epidermal growth factor and insulin.
    Roger PP; Servais P; Dumont JE
    J Cell Physiol; 1987 Jan; 130(1):58-67. PubMed ID: 3027108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidermal growth factor receptors lose ligand binding ability as WI-38 cells progress from short-term to long-term quiescence.
    Donigan AM; Cavalli RC; Pena AA; Savage CR; Soprano DR; Soprano KJ
    J Cell Physiol; 1993 Apr; 155(1):164-70. PubMed ID: 8468362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that density-dependent growth arrest is a two-stage process in WI-38 cells.
    Owen TA; Carter R; Whitman MM; Soprano DR; Soprano KJ
    J Cell Physiol; 1990 Jan; 142(1):137-48. PubMed ID: 1688860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth regulation in primary culture of rabbit arterial smooth muscle cells by platelet-derived growth factor, insulin-like growth factor-I, and epidermal growth factor.
    Yamamoto M; Yamamoto K
    Exp Cell Res; 1994 May; 212(1):62-8. PubMed ID: 8174643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormonal regulation of discrete portions of the cell cycle: commitment to DNA synthesis is commitment to cellular division.
    Wharton W
    J Cell Physiol; 1983 Dec; 117(3):423-9. PubMed ID: 6361045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered cell cycle responses to insulin-like growth factor I, but not platelet-derived growth factor and epidermal growth factor, in senescing human fibroblasts.
    Chen YY; Rabinovitch PS
    J Cell Physiol; 1990 Jul; 144(1):18-25. PubMed ID: 2365743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen.
    van der Burg B; Rutteman GR; Blankenstein MA; de Laat SW; van Zoelen EJ
    J Cell Physiol; 1988 Jan; 134(1):101-8. PubMed ID: 3275677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platelet-derived growth factor, epidermal growth factor, and insulin-like growth factor I regulate specific cell-cycle parameters of human diploid fibroblasts in serum-free culture.
    Chen Y; Rabinovitch PS
    J Cell Physiol; 1989 Jul; 140(1):59-67. PubMed ID: 2786882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitogenic action of tumor necrosis factor in human fibroblasts: interaction with epidermal growth factor and platelet-derived growth factor.
    Palombella VJ; Mendelsohn J; Vilcek J
    J Cell Physiol; 1988 Apr; 135(1):23-31. PubMed ID: 3259236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative effects of different types of growth factors on DNA replication, mitosis, and cellular enlargement.
    Zetterberg A; Engström W; Dafgård E
    Cytometry; 1984 Jul; 5(4):368-75. PubMed ID: 6380994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition by retinoids of platelet growth factor-dependent stimulation of DNA synthesis and cell division in density-arrested C3H 10T1/2 fibroblasts.
    Mordan LJ
    Cancer Res; 1989 Feb; 49(4):906-9. PubMed ID: 2783558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of polyamine depletion on serum stimulation of quiescent 3T3 murine fibroblast cells.
    Schaefer EL; Seidenfeld J
    J Cell Physiol; 1987 Dec; 133(3):546-52. PubMed ID: 3121641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soluble insulin-like growth factor II/mannose 6-phosphate receptor inhibits DNA synthesis in insulin-like growth factor II sensitive cells.
    Scott CD; Weiss J
    J Cell Physiol; 2000 Jan; 182(1):62-8. PubMed ID: 10567917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of BALB/c-3T3 cells in late G1: commitment to DNA synthesis controlled by somatomedin C.
    Wharton W; Van Wyk JJ; Pledger WJ
    J Cell Physiol; 1981 Apr; 107(1):31-9. PubMed ID: 7194350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of human ornithine decarboxylase expression following prolonged quiescence: role for the c-Myc/Max protein complex.
    Peña A; Wu S; Hickok NJ; Soprano DR; Soprano KJ
    J Cell Physiol; 1995 Feb; 162(2):234-45. PubMed ID: 7822433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WI-38 cell long-term quiescence model system: a valuable tool to study molecular events that regulate growth.
    Soprano KJ
    J Cell Biochem; 1994 Apr; 54(4):405-14. PubMed ID: 8014189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.