These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26541477)

  • 1. Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump.
    Zhang HY; Picton L; Li WC; Sillar KT
    Sci Rep; 2015 Nov; 5():16188. PubMed ID: 26541477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.
    Zhang HY; Sillar KT
    Curr Biol; 2012 Mar; 22(6):526-31. PubMed ID: 22405867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.
    Picton LD; Nascimento F; Broadhead MJ; Sillar KT; Miles GB
    J Neurosci; 2017 Jan; 37(4):906-921. PubMed ID: 28123025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms.
    Li WC
    J Neurosci; 2015 Jul; 35(27):9799-810. PubMed ID: 26156983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent feedforward inhibition modulates synaptic transmission in a spinal locomotor network.
    Parker D
    J Neurosci; 2003 Dec; 23(35):11085-93. PubMed ID: 14657166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord.
    Hachoumi L; Rensner R; Richmond C; Picton L; Zhang H; Sillar KT
    Curr Biol; 2022 Mar; 32(5):1038-1048.e2. PubMed ID: 35104440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation.
    Kozlov A; Kotaleski JH; Aurell E; Grillner S; Lansner A
    J Comput Neurosci; 2001; 11(2):183-200. PubMed ID: 11717534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of locomotion rhythms without inhibition in vertebrates: the search for pacemaker neurons.
    Li WC
    Integr Comp Biol; 2011 Dec; 51(6):879-89. PubMed ID: 21562024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of locomotor frequency by excitation and inhibition.
    Li WC; Moult PR
    J Neurosci; 2012 May; 32(18):6220-30. PubMed ID: 22553028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.
    Soffe SR; Roberts A; Li WC
    J Physiol; 2009 Oct; 587(Pt 20):4829-44. PubMed ID: 19703959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium pump regulation of locomotor control circuits.
    Picton LD; Zhang H; Sillar KT
    J Neurophysiol; 2017 Aug; 118(2):1070-1081. PubMed ID: 28539392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.
    Li WC; Merrison-Hort R; Zhang HY; Borisyuk R
    J Neurosci; 2014 Apr; 34(17):6065-77. PubMed ID: 24760866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity.
    Guzulaitis R; Hounsgaard J
    J Neurosci; 2017 Sep; 37(38):9239-9248. PubMed ID: 28842417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABAB receptor activation causes a depression of low- and high-voltage-activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons.
    Matsushima T; Tegnér J; Hill RH; Grillner S
    J Neurophysiol; 1993 Dec; 70(6):2606-19. PubMed ID: 8120601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles.
    Merrywest SD; McDearmid JR; Kjaerulff O; Kiehn O; Sillar KT
    Eur J Neurosci; 2003 Mar; 17(5):1013-22. PubMed ID: 12653977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord.
    Cangiano L; Grillner S
    J Neurosci; 2005 Jan; 25(4):923-35. PubMed ID: 15673673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.