These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26541652)

  • 1. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.
    Boxi SS; Paria S
    Dalton Trans; 2015 Dec; 44(47):20464-74. PubMed ID: 26541652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles.
    Boxi SS; Paria S
    Dalton Trans; 2016 Jan; 45(2):811-9. PubMed ID: 26645767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and optical characterization of single phased ZnS:Mn²⁺/CdS core-shell nanoparticles.
    Murugadoss G; Ramasamy V
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():70-4. PubMed ID: 22465770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence behavior of cysteine-mediated Ag@CdS nanocolloids.
    Thakur P; Joshi SS; Kapoor S; Mukherjee T
    Langmuir; 2009 Jun; 25(11):6377-84. PubMed ID: 19469470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation.
    Ensafi AA; Kazemifard N; Rezaei B
    Biosens Bioelectron; 2016 Mar; 77():499-504. PubMed ID: 26457735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: determination of free Ag+ in silver nanoparticles solution.
    Khantaw T; Boonmee C; Tuntulani T; Ngeontae W
    Talanta; 2013 Oct; 115():849-56. PubMed ID: 24054673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Turn-on" fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode.
    Huang D; Niu C; Wang X; Lv X; Zeng G
    Anal Chem; 2013 Jan; 85(2):1164-70. PubMed ID: 23256544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor.
    Page LE; Zhang X; Jawaid AM; Snee PT
    Chem Commun (Camb); 2011 Jul; 47(27):7773-5. PubMed ID: 21643596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical and structural characterization of CdS/ZnS and CdS:Cu(2+) /ZnS core-shell nanoparticles.
    Murugadoss G; Kumar MR
    Luminescence; 2014 Sep; 29(6):663-8. PubMed ID: 24254232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly sensitive protocol for the determination of Hg(2+) in environmental water using time-gated mode.
    Huang D; Niu C; Zeng G; Wang X; Lv X
    Talanta; 2015 Jan; 132():606-12. PubMed ID: 25476351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals.
    Singh S; Bozhilov K; Mulchandani A; Myung N; Chen W
    Chem Commun (Camb); 2010 Mar; 46(9):1473-5. PubMed ID: 20162152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound-assisted microwave preparation of Ag-doped CdS nanoparticles.
    Ma J; Tai G; Guo W
    Ultrason Sonochem; 2010 Mar; 17(3):534-40. PubMed ID: 20006938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemical approach for the capping of mixed core CdS/ZnS nanocrystals: Elimination of cadmium toxicity.
    Bujňáková Z; Baláž M; Dutková E; Baláž P; Kello M; Mojžišová G; Mojžiš J; Vilková M; Imrich J; Psotka M
    J Colloid Interface Sci; 2017 Jan; 486():97-111. PubMed ID: 27693554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive photoelectrochemical immunoassay of Staphylococcus aureus based on one-pot electrodeposited ZnS/CdS heterojunction nanoparticles.
    Yang H; Zhao X; Wang H; Deng W; Tan Y; Ma M; Xie Q
    Analyst; 2019 Dec; 145(1):165-171. PubMed ID: 31724656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals.
    Chen O; Shelby DE; Yang Y; Zhuang J; Wang T; Niu C; Omenetto N; Cao YC
    Angew Chem Int Ed Engl; 2010 Dec; 49(52):10132-5. PubMed ID: 21110362
    [No Abstract]   [Full Text] [Related]  

  • 16. [Synthesis and spectral studies of functionalized L-Cys-CdS nanoparticles as fluorescence probes].
    Dai ML; Yan ZY; Pang DW; Shao XF; Qu P; Zhao JT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1503-7. PubMed ID: 17058957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A selective fluorescence probe for mercury ion based on the fluorescence quenching of terbium(III)-doped cadmium sulfide composite nanoparticles.
    Fu J; Wang L; Chen H; Bo L; Zhou C; Chen J
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(3):625-9. PubMed ID: 20663708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.
    Thalmann B; Voegelin A; Sinnet B; Morgenroth E; Kaegi R
    Environ Sci Technol; 2014 May; 48(9):4885-92. PubMed ID: 24678586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescence properties of multilayer coated single structure ZnS/CdS/ZnS nanocomposites.
    Murugadoss G
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():53-7. PubMed ID: 22465767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals.
    Yang Y; Chen O; Angerhofer A; Cao YC
    J Am Chem Soc; 2006 Sep; 128(38):12428-9. PubMed ID: 16984188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.