These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1162 related articles for article (PubMed ID: 26542113)
1. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Tan Y; Wei X; Zhang Y; Wang P; Qiu B; Guo L; Lin Z; Yang HH Anal Chem; 2015 Dec; 87(23):11826-31. PubMed ID: 26542113 [TBL] [Abstract][Full Text] [Related]
2. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification. Ni J; Yang W; Wang Q; Luo F; Guo L; Qiu B; Lin Z; Yang H Biosens Bioelectron; 2018 May; 105():182-187. PubMed ID: 29412943 [TBL] [Abstract][Full Text] [Related]
3. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Tong P; Zhang L; Xu JJ; Chen HY Biosens Bioelectron; 2011 Nov; 29(1):97-101. PubMed ID: 21855315 [TBL] [Abstract][Full Text] [Related]
4. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Wang Y; Ning G; Wu Y; Wu S; Zeng B; Liu G; He X; Wang K Biosens Bioelectron; 2019 Jan; 124-125():82-88. PubMed ID: 30343160 [TBL] [Abstract][Full Text] [Related]
5. Homogeneous electrochemical aptasensor for mucin 1 detection based on exonuclease I-assisted target recycling amplification strategy. Lin C; Zheng H; Huang Y; Chen Z; Luo F; Wang J; Guo L; Qiu B; Lin Z; Yang H Biosens Bioelectron; 2018 Oct; 117():474-479. PubMed ID: 29982116 [TBL] [Abstract][Full Text] [Related]
6. Label-free and sensitive detection of Ochratoxin A based on dsDNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification. Song C; Hong W; Zhang X; Lu Y Analyst; 2018 Apr; 143(8):1829-1834. PubMed ID: 29594306 [TBL] [Abstract][Full Text] [Related]
7. An aptasensing platform for simultaneous detection of multiple analytes based on the amplification of exonuclease-catalyzed target recycling and DNA concatemers. Jiang L; Peng J; Yuan R; Chai Y; Yuan Y; Bai L; Wang Y Analyst; 2013 Sep; 138(17):4818-22. PubMed ID: 23817314 [TBL] [Abstract][Full Text] [Related]
8. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL; Zhang YF; Sun GP; Wang XN; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Wu J; Chu H; Mei Z; Deng Y; Xue F; Zheng L; Chen W Anal Chim Acta; 2012 Nov; 753():27-31. PubMed ID: 23107133 [TBL] [Abstract][Full Text] [Related]
10. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy. Bao T; Shu H; Wen W; Zhang X; Wang S Anal Chim Acta; 2015 Mar; 862():64-9. PubMed ID: 25682429 [TBL] [Abstract][Full Text] [Related]
11. An amperometric aptasensor for ultrasensitive detection of sulfadimethoxine based on exonuclease-assisted target recycling and new signal tracer for amplification. You H; Bai L; Yuan Y; Zhou J; Bai Y; Mu Z Biosens Bioelectron; 2018 Oct; 117():706-712. PubMed ID: 30014944 [TBL] [Abstract][Full Text] [Related]
12. A label-free photoelectrochemical aptasensor for facile and ultrasensitive mercury ion assay based on a solution-phase photoactive probe and exonuclease III-assisted amplification. Xu N; Hou T; Li F Analyst; 2019 Jun; 144(12):3800-3806. PubMed ID: 31116196 [TBL] [Abstract][Full Text] [Related]
13. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Huang L; Wu J; Zheng L; Qian H; Xue F; Wu Y; Pan D; Adeloju SB; Chen W Anal Chem; 2013 Nov; 85(22):10842-9. PubMed ID: 24206525 [TBL] [Abstract][Full Text] [Related]
14. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. Wen W; Hu R; Bao T; Zhang X; Wang S Biosens Bioelectron; 2015 Sep; 71():13-17. PubMed ID: 25880833 [TBL] [Abstract][Full Text] [Related]
15. A sensitive electrochemical aptasensor for thrombin detection based on exonuclease-catalyzed target recycling and enzyme-catalysis. Yi H; Xu W; Yuan Y; Wu Y; Chai Y; Yuan R Biosens Bioelectron; 2013 Sep; 47():368-72. PubMed ID: 23603135 [TBL] [Abstract][Full Text] [Related]
16. Exonuclease III-aided autocatalytic DNA biosensing platform for immobilization-free and ultrasensitive electrochemical detection of nucleic acid and protein. Liu S; Lin Y; Wang L; Liu T; Cheng C; Wei W; Tang B Anal Chem; 2014 Apr; 86(8):4008-15. PubMed ID: 24655032 [TBL] [Abstract][Full Text] [Related]
17. An exonuclease-assisted amplification electrochemical aptasensor of thrombin coupling "signal on/off" strategy. Bao T; Wen W; Zhang X; Wang S Anal Chim Acta; 2015 Feb; 860():70-6. PubMed ID: 25682249 [TBL] [Abstract][Full Text] [Related]
18. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection. Ni J; Wang Q; Yang W; Zhao M; Zhang Y; Guo L; Qiu B; Lin Z; Yang HH Biosens Bioelectron; 2016 Dec; 86():496-501. PubMed ID: 27442079 [TBL] [Abstract][Full Text] [Related]
19. Electrochemiluminescence recovery-based aptasensor for sensitive Ochratoxin A detection via exonuclease-catalyzed target recycling amplification. Yang M; Jiang B; Xie J; Xiang Y; Yuan R; Chai Y Talanta; 2014 Jul; 125():45-50. PubMed ID: 24840413 [TBL] [Abstract][Full Text] [Related]
20. An electrochemical aptasensor for multiplex antibiotics detection based on metal ions doped nanoscale MOFs as signal tracers and RecJ Chen M; Gan N; Zhou Y; Li T; Xu Q; Cao Y; Chen Y Talanta; 2016 Dec; 161():867-874. PubMed ID: 27769495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]