These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26542758)

  • 1. Flexible estimation of survival curves conditional on non-linear and time-dependent predictor effects.
    Wynant W; Abrahamowicz M
    Stat Med; 2016 Feb; 35(4):553-65. PubMed ID: 26542758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of the model-building strategy on inference about nonlinear and time-dependent covariate effects in survival analysis.
    Wynant W; Abrahamowicz M
    Stat Med; 2014 Aug; 33(19):3318-37. PubMed ID: 24757068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical study of the dependence of the results of multivariable flexible survival analyses on model selection strategy.
    Binquet C; Abrahamowicz M; Mahboubi A; Jooste V; Faivre J; Bonithon-Kopp C; Quantin C
    Stat Med; 2008 Dec; 27(30):6470-88. PubMed ID: 18837067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the alternating conditional estimation algorithm for estimation of flexible extensions of Cox's proportional hazards model with nonlinear constraints on the parameters.
    Wynant W; Abrahamowicz M
    Biom J; 2016 Nov; 58(6):1445-1464. PubMed ID: 27550754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible modeling of competing risks in survival analysis.
    Belot A; Abrahamowicz M; Remontet L; Giorgi R
    Stat Med; 2010 Oct; 29(23):2453-68. PubMed ID: 20645282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible modeling of the effects of continuous prognostic factors in relative survival.
    Mahboubi A; Abrahamowicz M; Giorgi R; Binquet C; Bonithon-Kopp C; Quantin C
    Stat Med; 2011 May; 30(12):1351-65. PubMed ID: 21432891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible extension of the accelerated failure time model to account for nonlinear and time-dependent effects of covariates on the hazard.
    Pang M; Platt RW; Schuster T; Abrahamowicz M
    Stat Methods Med Res; 2021 Nov; 30(11):2526-2542. PubMed ID: 34547928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation program for estimating statistical power of Cox's proportional hazards model assuming no specific distribution for the survival time.
    Akazawa K; Nakamura T; Moriguchi S; Shimada M; Nose Y
    Comput Methods Programs Biomed; 1991 Jul; 35(3):203-12. PubMed ID: 1935013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A partial likelihood approach to smooth estimation of dynamic covariate effects using penalised splines.
    Brown D; Kauermann G; Ford I
    Biom J; 2007 Jun; 49(3):441-52. PubMed ID: 17623348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint estimation of time-dependent and non-linear effects of continuous covariates on survival.
    Abrahamowicz M; MacKenzie TA
    Stat Med; 2007 Jan; 26(2):392-408. PubMed ID: 16479552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear and time-dependent effects of sparsely measured continuous time-varying covariates in time-to-event analysis.
    Wang Y; Beauchamp ME; Abrahamowicz M
    Biom J; 2020 Mar; 62(2):492-515. PubMed ID: 32022299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Cox's and relative survival models when estimating the effects of prognostic factors on disease-specific mortality: a simulation study under proportional excess hazards.
    Le Teuff G; Abrahamowicz M; Bolard P; Quantin C
    Stat Med; 2005 Dec; 24(24):3887-909. PubMed ID: 16320267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing time-by-covariate interactions in relative survival models using restrictive cubic spline functions.
    Bolard P; Quantin C; Abrahamowicz M; Esteve J; Giorgi R; Chadha-Boreham H; Binquet C; Faivre J
    J Cancer Epidemiol Prev; 2002; 7(3):113-22. PubMed ID: 12665210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REML estimation for survival models with frailty.
    McGilchrist CA
    Biometrics; 1993 Mar; 49(1):221-5. PubMed ID: 8513103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects.
    Royston P; Parmar MK
    Stat Med; 2002 Aug; 21(15):2175-97. PubMed ID: 12210632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partly conditional survival models for longitudinal data.
    Zheng Y; Heagerty PJ
    Biometrics; 2005 Jun; 61(2):379-91. PubMed ID: 16011684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric and penalized generalized survival models.
    Liu XR; Pawitan Y; Clements M
    Stat Methods Med Res; 2018 May; 27(5):1531-1546. PubMed ID: 27587596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the survival function for Gray's piecewise-constant time-varying coefficients model.
    Valenta Z; Weissfeld L
    Stat Med; 2002 Mar; 21(5):717-27. PubMed ID: 11870812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flexible class of generalized joint frailty models for the analysis of survival endpoints.
    Chauvet J; Rondeau V
    Stat Med; 2023 Apr; 42(8):1233-1262. PubMed ID: 36775273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized survival models for correlated time-to-event data.
    Liu XR; Pawitan Y; Clements MS
    Stat Med; 2017 Dec; 36(29):4743-4762. PubMed ID: 28905409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.