BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 26543160)

  • 1. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2.
    Ye J; Palm W; Peng M; King B; Lindsten T; Li MO; Koumenis C; Thompson CB
    Genes Dev; 2015 Nov; 29(22):2331-6. PubMed ID: 26543160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice.
    Nikonorova IA; Al-Baghdadi RJT; Mirek ET; Wang Y; Goudie MP; Wetstein BB; Dixon JL; Hine C; Mitchell JR; Adams CM; Wek RC; Anthony TG
    J Biol Chem; 2017 Apr; 292(16):6786-6798. PubMed ID: 28242759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation.
    Kimball SR; Gordon BS; Moyer JE; Dennis MD; Jefferson LS
    Cell Signal; 2016 Aug; 28(8):896-906. PubMed ID: 27010498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sestrin2 is a leucine sensor for the mTORC1 pathway.
    Wolfson RL; Chantranupong L; Saxton RA; Shen K; Scaria SM; Cantor JR; Sabatini DM
    Science; 2016 Jan; 351(6268):43-8. PubMed ID: 26449471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism.
    Averous J; Lambert-Langlais S; Mesclon F; Carraro V; Parry L; Jousse C; Bruhat A; Maurin AC; Pierre P; Proud CG; Fafournoux P
    Sci Rep; 2016 Jun; 6():27698. PubMed ID: 27297692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1.
    Chantranupong L; Wolfson RL; Orozco JM; Saxton RA; Scaria SM; Bar-Peled L; Spooner E; Isasa M; Gygi SP; Sabatini DM
    Cell Rep; 2014 Oct; 9(1):1-8. PubMed ID: 25263562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1).
    Dennis MD; McGhee NK; Jefferson LS; Kimball SR
    Cell Signal; 2013 Dec; 25(12):2709-16. PubMed ID: 24018049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key mediators of intracellular amino acids signaling to mTORC1 activation.
    Duan Y; Li F; Tan K; Liu H; Li Y; Liu Y; Kong X; Tang Y; Wu G; Yin Y
    Amino Acids; 2015 May; 47(5):857-67. PubMed ID: 25701492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
    Averous J; Lambert-Langlais S; Carraro V; Gourbeyre O; Parry L; B'Chir W; Muranishi Y; Jousse C; Bruhat A; Maurin AC; Proud CG; Fafournoux P
    Cell Signal; 2014 Sep; 26(9):1918-27. PubMed ID: 24793303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase.
    Al-Baghdadi RJT; Nikonorova IA; Mirek ET; Wang Y; Park J; Belden WJ; Wek RC; Anthony TG
    Sci Rep; 2017 Apr; 7(1):1272. PubMed ID: 28455513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver.
    Nikonorova IA; Mirek ET; Signore CC; Goudie MP; Wek RC; Anthony TG
    J Biol Chem; 2018 Apr; 293(14):5005-5015. PubMed ID: 29449374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes.
    Kim JS; Ro SH; Kim M; Park HW; Semple IA; Park H; Cho US; Wang W; Guan KL; Karin M; Lee JH
    Sci Rep; 2015 Mar; 5():9502. PubMed ID: 25819761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of the two amino acid sensing systems, the GCN2 kinase and the mTOR complex 1, on primary human alloreactive CD4⁺ T-cells.
    Eleftheriadis T; Pissas G; Antoniadi G; Liakopoulos V; Tsogka K; Sounidaki M; Stefanidis I
    Int J Mol Med; 2016 May; 37(5):1412-20. PubMed ID: 27035541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9.
    Jung J; Genau HM; Behrends C
    Mol Cell Biol; 2015 Jul; 35(14):2479-94. PubMed ID: 25963655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy modulates amino acid signaling network in myotubes: differential effects on mTORC1 pathway and the integrated stress response.
    Yu X; Long YC
    FASEB J; 2015 Feb; 29(2):394-407. PubMed ID: 25376834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid homeostasis and signalling in mammalian cells and organisms.
    Bröer S; Bröer A
    Biochem J; 2017 May; 474(12):1935-1963. PubMed ID: 28546457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.
    Tate JJ; Buford D; Rai R; Cooper TG
    Genetics; 2017 Feb; 205(2):633-655. PubMed ID: 28007891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 Deletion or Hotspot Mutations Enhance mTORC1 Activity by Altering Lysosomal Dynamics of TSC2 and Rheb.
    Agarwal S; Bell CM; Taylor SM; Moran RG
    Mol Cancer Res; 2016 Jan; 14(1):66-77. PubMed ID: 26385560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling.
    Peng M; Yin N; Li MO
    Cell; 2014 Sep; 159(1):122-133. PubMed ID: 25259925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase.
    Bunpo P; Dudley A; Cundiff JK; Cavener DR; Wek RC; Anthony TG
    J Biol Chem; 2009 Nov; 284(47):32742-9. PubMed ID: 19783659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.