These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26543723)

  • 1. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.
    Biala TA; Jator SN
    Springerplus; 2015; 4():588. PubMed ID: 26543723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On Using Collocation in Three Dimensions and Solving a Model Semiconductor Problem.
    Marchiando JF
    J Res Natl Inst Stand Technol; 1995; 100(6):661-676. PubMed ID: 29151767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical technique for linear elliptic partial differential equations in polygonal domains.
    Hashemzadeh P; Fokas AS; Smitheman SA
    Proc Math Phys Eng Sci; 2015 Mar; 471(2175):20140747. PubMed ID: 25792955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Power of Implicit Six-Point Block Scheme: Advancing numerical approximation of two-dimensional PDEs in physical systems.
    Olaoluwa Omole E; Olusheye Adeyefa E; Iyabo Apanpa K; Iyadunni Ayodele V; Emmanuel Amoyedo F; Emadifar H
    PLoS One; 2024; 19(5):e0301505. PubMed ID: 38753696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Numerical Solution of a Nonseparable Elliptic Partial Differential Equation by Preconditioned Conjugate Gradients.
    Lewis JG; Rehm RG
    J Res Natl Bur Stand (1977); 1980; 85(5):367-390. PubMed ID: 34566030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High accuracy finite difference approximation to solutions of elliptic partial differential equations.
    Lynch RE; Rice JR
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2541-4. PubMed ID: 16592530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid collocation method for solving highly nonlinear boundary value problems.
    Adewumi AO; Akindeinde SO; Aderogba AA; Ogundare BS
    Heliyon; 2020 Mar; 6(3):e03553. PubMed ID: 32195390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Accuracy Spline Explicit Group (SEG) Approximation for Two Dimensional Elliptic Boundary Value Problems.
    Goh J; Hj M Ali N
    PLoS One; 2015; 10(7):e0132782. PubMed ID: 26182211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains.
    Balam RI; Hernandez-Lopez F; Trejo-Sánchez J; Zapata MU
    Math Biosci Eng; 2020 Nov; 18(1):22-56. PubMed ID: 33525079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WEAK GALERKIN METHODS FOR SECOND ORDER ELLIPTIC INTERFACE PROBLEMS.
    Mu L; Wang J; Wei G; Ye X; Zhao S
    J Comput Phys; 2013 Oct; 250():106-125. PubMed ID: 24072935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural networks for solving ordinary and partial differential equations.
    Lagaris IE; Likas A; Fotiadis DI
    IEEE Trans Neural Netw; 1998; 9(5):987-1000. PubMed ID: 18255782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Galerkin formulation of the MIB method for three dimensional elliptic interface problems.
    Xia K; Wei GW
    Comput Math Appl; 2014 Oct; 68(7):719-745. PubMed ID: 25309038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VIM-based dynamic sparse grid approach to partial differential equations.
    Mei SL
    ScientificWorldJournal; 2014; 2014():390148. PubMed ID: 24723805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.
    Sarbach O; Tiglio M
    Living Rev Relativ; 2012; 15(1):9. PubMed ID: 28179838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MIB Galerkin method for elliptic interface problems.
    Xia K; Zhan M; Wei GW
    J Comput Appl Math; 2014 Dec; 272():195-220. PubMed ID: 24999292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite difference spectral collocation schemes for the solutions of boundary value problems.
    Adewumi AO; Aderogba AA; Akindeinde SO; Fabelurin OO; Lebelo RS
    Heliyon; 2024 Jan; 10(1):e23453. PubMed ID: 38169955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics.
    Aguayo-Ortiz A; Mendoza S; Olvera D
    PLoS One; 2018; 13(4):e0195494. PubMed ID: 29659602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIB method for elliptic equations with multi-material interfaces.
    Xia K; Zhan M; Wei GW
    J Comput Phys; 2011 Jun; 230(12):4588-4615. PubMed ID: 21691433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.
    Vazquez-Leal H; Benhammouda B; Filobello-Nino UA; Sarmiento-Reyes A; Jimenez-Fernandez VM; Marin-Hernandez A; Herrera-May AL; Diaz-Sanchez A; Huerta-Chua J
    Springerplus; 2014; 3():160. PubMed ID: 24790815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.