These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26544649)

  • 1. Ligand-Mediated "Turn On," High Quantum Yield Near-Infrared Emission in Small Gold Nanoparticles.
    Crawford SE; Andolina CM; Smith AM; Marbella LE; Johnston KA; Straney PJ; Hartmann MJ; Millstone JE
    J Am Chem Soc; 2015 Nov; 137(45):14423-9. PubMed ID: 26544649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Chemistry-Mediated Near-Infrared Emission of Small Coinage Metal Nanoparticles.
    Crawford SE; Hartmann MJ; Millstone JE
    Acc Chem Res; 2019 Mar; 52(3):695-703. PubMed ID: 30742413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission.
    Andolina CM; Dewar AC; Smith AM; Marbella LE; Hartmann MJ; Millstone JE
    J Am Chem Soc; 2013 Apr; 135(14):5266-9. PubMed ID: 23548041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution NMR Analysis of Ligand Environment in Quaternary Ammonium-Terminated Self-Assembled Monolayers on Gold Nanoparticles: The Effect of Surface Curvature and Ligand Structure.
    Wu M; Vartanian AM; Chong G; Pandiakumar AK; Hamers RJ; Hernandez R; Murphy CJ
    J Am Chem Soc; 2019 Mar; 141(10):4316-4327. PubMed ID: 30763078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemistry of the sulfur-gold interface: in search of a unified model.
    Pensa E; Cortés E; Corthey G; Carro P; Vericat C; Fonticelli MH; Benítez G; Rubert AA; Salvarezza RC
    Acc Chem Res; 2012 Aug; 45(8):1183-92. PubMed ID: 22444437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Control over the Electronic Properties within the Metallic Core of Gold Nanoparticles.
    Cirri A; Silakov A; Lear BJ
    Angew Chem Int Ed Engl; 2015 Sep; 54(40):11750-3. PubMed ID: 26274014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound-mediated modulation of the emission of gold nanodots.
    Tseng YT; Cherng R; Yuan Z; Wu CW; Chang HT; Huang CC
    Nanoscale; 2016 Mar; 8(9):5162-9. PubMed ID: 26877145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of thiolated ligand exchange on gold nanoparticles monitored by 1H NMR spectroscopy.
    Smith AM; Marbella LE; Johnston KA; Hartmann MJ; Crawford SE; Kozycz LM; Seferos DS; Millstone JE
    Anal Chem; 2015 Mar; 87(5):2771-8. PubMed ID: 25658511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly.
    Tseng YT; Cherng R; Harroun SG; Yuan Z; Lin TY; Wu CW; Chang HT; Huang CC
    Nanoscale; 2016 May; 8(18):9771-9. PubMed ID: 27118444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors.
    Lohse SE; Dahl JA; Hutchison JE
    Langmuir; 2010 May; 26(10):7504-11. PubMed ID: 20180591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker.
    Ou YY; Huang MH
    J Phys Chem B; 2006 Feb; 110(5):2031-6. PubMed ID: 16471779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The story of a monodisperse gold nanoparticle: Au25L18.
    Parker JF; Fields-Zinna CA; Murray RW
    Acc Chem Res; 2010 Sep; 43(9):1289-96. PubMed ID: 20597498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and binding interaction of bilirubin on a gold nano-surface: steady state fluorescence and FT-IR investigation.
    Maity M; Das S; Maiti NC
    Phys Chem Chem Phys; 2014 Oct; 16(37):20013-22. PubMed ID: 25123491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subnanometer Control of Mean Core Size during Mesofluidic Synthesis of Small (D(core) < 10 nm) Water-Soluble, Ligand-Stabilized Gold Nanoparticles.
    Elliott EW; Haben PM; Hutchison JE
    Langmuir; 2015 Nov; 31(43):11886-94. PubMed ID: 26436612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles.
    Reimers JR; Wang Y; Cankurtaran BO; Ford MJ
    J Am Chem Soc; 2010 Jun; 132(24):8378-84. PubMed ID: 20518461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoclusters with bright near-infrared photoluminescence.
    Pramanik G; Humpolickova J; Valenta J; Kundu P; Bals S; Bour P; Dracinsky M; Cigler P
    Nanoscale; 2018 Feb; 10(8):3792-3798. PubMed ID: 29412211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity.
    Jennings TL; Singh MP; Strouse GF
    J Am Chem Soc; 2006 Apr; 128(16):5462-7. PubMed ID: 16620118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.