These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26544649)

  • 21. Carbon nanodots as ligand exchange probes in Au@C-dot nanobeacons for fluorescent turn-on detection of biothiols.
    Mandani S; Sharma B; Dey D; Sarma TK
    Nanoscale; 2015 Feb; 7(5):1802-8. PubMed ID: 25520240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Ligand Shell Composition upon Interparticle Interactions in Multifunctional Nanoparticles.
    Kennedy ZC; Lisowski CE; Mitaru-Berceanu DS; Hutchison JE
    Langmuir; 2015 Nov; 31(46):12742-52. PubMed ID: 26497061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface.
    Takae S; Akiyama Y; Otsuka H; Nakamura T; Nagasaki Y; Kataoka K
    Biomacromolecules; 2005; 6(2):818-24. PubMed ID: 15762646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification.
    Stouwdam JW; van Veggel FC
    Langmuir; 2004 Dec; 20(26):11763-71. PubMed ID: 15595809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of thiol ligands from surface-confined nanoparticles without particle growth or desorption.
    Elliott EW; Glover RD; Hutchison JE
    ACS Nano; 2015 Mar; 9(3):3050-9. PubMed ID: 25727562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold supported on thin oxide films: from single atoms to nanoparticles.
    Risse T; Shaikhutdinov S; Nilius N; Sterrer M; Freund HJ
    Acc Chem Res; 2008 Aug; 41(8):949-56. PubMed ID: 18616299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors.
    Ipe BI; Yoosaf K; Thomas KG
    J Am Chem Soc; 2006 Feb; 128(6):1907-13. PubMed ID: 16464092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing ligand-induced modulation of metallic states in small gold nanoparticles using conduction electron spin resonance.
    Cirri A; Silakov A; Jensen L; Lear BJ
    Phys Chem Chem Phys; 2016 Sep; 18(36):25443-25451. PubMed ID: 27711383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide.
    Cui H; Zhang ZF; Shi MJ; Xu Y; Wu YL
    Anal Chem; 2005 Oct; 77(19):6402-6. PubMed ID: 16194106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-step high-yield aqueous synthesis of size-tunable multispiked gold nanoparticles.
    Sau TK; Rogach AL; Döblinger M; Feldmann J
    Small; 2011 Aug; 7(15):2188-94. PubMed ID: 21630442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Air-Stable Gold Nanoparticles Ligated by Secondary Phosphine Oxides as Catalyst for the Chemoselective Hydrogenation of Substituted Aldehydes: a Remarkable Ligand Effect.
    Cano I; Huertos MA; Chapman AM; Buntkowsky G; Gutmann T; Groszewicz PB; van Leeuwen PW
    J Am Chem Soc; 2015 Jun; 137(24):7718-27. PubMed ID: 26034996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoluminescence of a Plasmonic Molecule.
    Huang D; Byers CP; Wang LY; Hoggard A; Hoener B; Dominguez-Medina S; Chen S; Chang WS; Landes CF; Link S
    ACS Nano; 2015 Jul; 9(7):7072-9. PubMed ID: 26165983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemically linked AuNP-alkane network for enhanced photoemission and field emission.
    Xie XN; Gao X; Qi D; Xie Y; Shen L; Yang SW; Sow CH; Wee AT
    ACS Nano; 2009 Sep; 3(9):2722-30. PubMed ID: 19769404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gold nanoparticles: past, present, and future.
    Sardar R; Funston AM; Mulvaney P; Murray RW
    Langmuir; 2009 Dec; 25(24):13840-51. PubMed ID: 19572538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced stability of Janus nanoparticles by covalent cross-linking of surface ligands.
    Song Y; Klivansky LM; Liu Y; Chen S
    Langmuir; 2011 Dec; 27(23):14581-8. PubMed ID: 22004354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles.
    Chen W; Pradhan S; Chen S
    Nanoscale; 2011 May; 3(5):2294-300. PubMed ID: 21494751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.