BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26544910)

  • 21. Distinct Dynamic Modes Enable the Engagement of Dissimilar Ligands in a Promiscuous Atypical RNA Recognition Motif.
    Brown KA; Sharifi S; Hussain R; Donaldson L; Bayfield MA; Wilson DJ
    Biochemistry; 2016 Dec; 55(51):7141-7150. PubMed ID: 27959512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo analysis of ribonucleoprotein complexes using nucleotide analog interference mapping.
    Szewczak LB
    Methods Mol Biol; 2008; 488():153-66. PubMed ID: 18982289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structure of the RNA component of a nuclear/mitochondrial ribonucleoprotein.
    Topper JN; Clayton DA
    J Biol Chem; 1990 Aug; 265(22):13254-62. PubMed ID: 1695904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized RNA targets of two closely related triple KH domain proteins, heterogeneous nuclear ribonucleoprotein K and alphaCP-2KL, suggest Distinct modes of RNA recognition.
    Thisted T; Lyakhov DL; Liebhaber SA
    J Biol Chem; 2001 May; 276(20):17484-96. PubMed ID: 11278705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging structural themes in large RNA molecules.
    Reiter NJ; Chan CW; Mondragón A
    Curr Opin Struct Biol; 2011 Jun; 21(3):319-26. PubMed ID: 21474301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the tertiary structure of the ribonuclease P ribozyme-substrate complex by site-specific photoaffinity crosslinking.
    Harris ME; Kazantsev AV; Chen JL; Pace NR
    RNA; 1997 Jun; 3(6):561-76. PubMed ID: 9174092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution.
    Wilkinson KA; Merino EJ; Weeks KM
    Nat Protoc; 2006; 1(3):1610-6. PubMed ID: 17406453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements.
    Hennig J; Warner LR; Simon B; Geerlof A; Mackereth CD; Sattler M
    Methods Enzymol; 2015; 558():333-362. PubMed ID: 26068746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells.
    Smola MJ; Christy TW; Inoue K; Nicholson CO; Friedersdorf M; Keene JD; Lee DM; Calabrese JM; Weeks KM
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10322-7. PubMed ID: 27578869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex.
    Welting TJ; van Venrooij WJ; Pruijn GJ
    Nucleic Acids Res; 2004; 32(7):2138-46. PubMed ID: 15096576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of RNA-protein networks with RNP-MaP defines functional hubs on RNA.
    Weidmann CA; Mustoe AM; Jariwala PB; Calabrese JM; Weeks KM
    Nat Biotechnol; 2021 Mar; 39(3):347-356. PubMed ID: 33077962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution.
    Kutchko KM; Laederach A
    Wiley Interdiscip Rev RNA; 2017 Jan; 8(1):. PubMed ID: 27396578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques.
    Malhotra A; Tan RK; Harvey SC
    Biophys J; 1994 Jun; 66(6):1777-95. PubMed ID: 7521223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbodiimide reagents for the chemical probing of RNA structure in cells.
    Wang PY; Sexton AN; Culligan WJ; Simon MD
    RNA; 2019 Jan; 25(1):135-146. PubMed ID: 30389828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequencing-based analysis of RNA structures in living cells with 2A3 via SHAPE-MaP.
    Incarnato D
    Methods Enzymol; 2023; 691():153-181. PubMed ID: 37914444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical Probing of RNA Structure In Vivo Using SHAPE-MaP and DMS-MaP.
    Saha K; Ghosh G
    Methods Mol Biol; 2023; 2666():81-93. PubMed ID: 37166658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro.
    López-Carrasco A; Flores R
    RNA Biol; 2017 Aug; 14(8):1046-1054. PubMed ID: 27574720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermolecular protein-RNA interactions revealed by 2D 31P-15N magic angle spinning solid-state NMR spectroscopy.
    Jehle S; Falb M; Kirkpatrick JP; Oschkinat H; van Rossum BJ; Althoff G; Carlomagno T
    J Am Chem Soc; 2010 Mar; 132(11):3842-6. PubMed ID: 20184366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
    Watters KE; Yu AM; Strobel EJ; Settle AH; Lucks JB
    Methods; 2016 Jul; 103():34-48. PubMed ID: 27064082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ribonucleases P/MRP and the expanding ribonucleoprotein world.
    Hernandez-Cid A; Aguirre-Sampieri S; Diaz-Vilchis A; Torres-Larios A
    IUBMB Life; 2012 Jun; 64(6):521-8. PubMed ID: 22605678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.