These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26544914)

  • 1. Atomic Resolution Observation of a Size-Dependent Change in the Ripening Modes of Mass-Selected Au Nanoclusters Involved in CO Oxidation.
    Hu KJ; Plant SR; Ellis PR; Brown CM; Bishop PT; Palmer RE
    J Am Chem Soc; 2015 Dec; 137(48):15161-8. PubMed ID: 26544914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced sintering of mass-selected Au clusters on SiO
    Niu Y; Schlexer P; Sebok B; Chorkendorff I; Pacchioni G; Palmer RE
    Nanoscale; 2018 Feb; 10(5):2363-2370. PubMed ID: 29328339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions.
    Ouyang R; Liu JX; Li WX
    J Am Chem Soc; 2013 Feb; 135(5):1760-71. PubMed ID: 23272702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of 1-pentyne hydrogenation on the atomic structures of size-selected Au(N) and Pd(N) (N = 923 and 2057) nanoclusters.
    Hu KJ; Plant SR; Ellis PR; Brown CM; Bishop PT; Palmer RE
    Phys Chem Chem Phys; 2014 Dec; 16(48):26631-7. PubMed ID: 25307787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors.
    Kielbassa S; Häbich A; Schnaidt J; Bansmann J; Weigl F; Boyen HG; Ziemann P; Behm RJ
    Langmuir; 2006 Aug; 22(18):7873-80. PubMed ID: 16922577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct In Situ TEM Visualization and Insight into the Facet-Dependent Sintering Behaviors of Gold on TiO
    Yuan W; Zhang D; Ou Y; Fang K; Zhu B; Yang H; Hansen TW; Wagner JB; Zhang Z; Gao Y; Wang Y
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16827-16831. PubMed ID: 30397982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena.
    Goodman ED; Carlson EZ; Dietze EM; Tahsini N; Johnson A; Aitbekova A; Nguyen Taylor T; Plessow PN; Cargnello M
    Nanoscale; 2021 Jan; 13(2):930-938. PubMed ID: 33367382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening.
    Wettergren K; Schweinberger FF; Deiana D; Ridge CJ; Crampton AS; Rötzer MD; Hansen TW; Zhdanov VP; Heiz U; Langhammer C
    Nano Lett; 2014 Oct; 14(10):5803-9. PubMed ID: 25198035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonscalable oxidation catalysis of gold clusters.
    Yamazoe S; Koyasu K; Tsukuda T
    Acc Chem Res; 2014 Mar; 47(3):816-24. PubMed ID: 24350598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically precise gold nanoclusters as new model catalysts.
    Li G; Jin R
    Acc Chem Res; 2013 Aug; 46(8):1749-58. PubMed ID: 23534692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO-induced smoluchowski ripening of Pt cluster arrays on the graphene/Ir(111) moiré.
    Gerber T; Knudsen J; Feibelman PJ; Grånäs E; Stratmann P; Schulte K; Andersen JN; Michely T
    ACS Nano; 2013 Mar; 7(3):2020-31. PubMed ID: 23379255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Size, Coverage, and Dispersity on the Potential-Controlled Ostwald Ripening of Metal Nanoparticles.
    Pattadar DK; Zamborini FP
    Langmuir; 2019 Dec; 35(50):16416-16426. PubMed ID: 31647240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition.
    He Y; Liu JC; Luo L; Wang YG; Zhu J; Du Y; Li J; Mao SX; Wang C
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7700-7705. PubMed ID: 29987052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.
    Nelayah J; Nguyen NT; Alloyeau D; Wang GY; Ricolleau C
    Nanoscale; 2014 Sep; 6(17):10423-30. PubMed ID: 25079393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ostwald-Driven Phase Separation in Bimetallic Nanoparticle Assemblies.
    Prévot G; Nguyen NT; Alloyeau D; Ricolleau C; Nelayah J
    ACS Nano; 2016 Apr; 10(4):4127-33. PubMed ID: 26989906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of the initial process of Ostwald ripening using spherical aberration-corrected transmission electron microscopy.
    Yoshida K; Bright A; Tanaka N
    J Electron Microsc (Tokyo); 2012 Apr; 61(2):99-103. PubMed ID: 22366031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere.
    Visser NL; Turner SJ; Stewart JA; Vandegehuchte BD; van der Hoeven JES; de Jongh PE
    ACS Nano; 2023 Aug; 17(15):14963-14973. PubMed ID: 37504574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.