These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26544914)

  • 41. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relativistic effects and the unique low-symmetry structures of gold nanoclusters.
    Huang W; Ji M; Dong CD; Gu X; Wang LM; Gong XG; Wang LS
    ACS Nano; 2008 May; 2(5):897-904. PubMed ID: 19206486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters.
    Kim HY; Henkelman G
    J Phys Chem Lett; 2012 Aug; 3(16):2194-9. PubMed ID: 26295770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfur Moiety as a Double-Edged Sword for Realizing Ultrafine Supported Metal Nanoclusters with a Cationic Nature.
    Duan X; Ning L; Yin Y; Huang Y; Gao J; Lin H; Tan K; Fang H; Ye L; Lu X; Yuan Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11317-11326. PubMed ID: 30835098
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gold clusters on Nb-doped SrTiO3: effects of metal-insulator transition on heterogeneous Au nanocatalysis.
    Zhou M; Feng YP; Zhang C
    Phys Chem Chem Phys; 2012 Jul; 14(27):9660-5. PubMed ID: 22692469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigating the structural evolution of thiolate protected gold clusters from first-principles.
    Pei Y; Zeng XC
    Nanoscale; 2012 Jul; 4(14):4054-72. PubMed ID: 22635136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.
    Meijerink MJ; de Jong KP; Zečević J
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(3):2202-2212. PubMed ID: 32010421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An atomic-level strategy for unraveling gold nanocatalysis from the perspective of Au(n)(SR)m nanoclusters.
    Zhu Y; Qian H; Jin R
    Chemistry; 2010 Oct; 16(37):11455-62. PubMed ID: 20715207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon.
    Foster DM; Pavloudis T; Kioseoglou J; Palmer RE
    Nat Commun; 2019 Jun; 10(1):2583. PubMed ID: 31197150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stability of the Two Au-S Binding Modes in Au(25)(SG)(18) Nanoclusters Probed by NMR and Optical Spectroscopy.
    Wu Z; Jin R
    ACS Nano; 2009 Jul; 3(7):2036-42. PubMed ID: 19548695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing the Thermal Stability of (3-Mercaptopropyl)-trimethoxysilane-Protected Au
    Sudheeshkumar V; Soong C; Dogel S; Scott RWJ
    Small; 2021 Jul; 17(27):e2004539. PubMed ID: 33511742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct observation of single Ostwald ripening processes by molecular dynamics simulation.
    Kraska T
    J Phys Chem B; 2008 Oct; 112(39):12408-13. PubMed ID: 18783194
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gold atoms stabilized on various supports catalyze the water-gas shift reaction.
    Flytzani-Stephanopoulos M
    Acc Chem Res; 2014 Mar; 47(3):783-92. PubMed ID: 24266870
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Very small "window of opportunity" for generating CO oxidation-active Au(n) on TiO2.
    Tang X; Schneider J; Dollinger A; Luo Y; Wörz AS; Judai K; Abbet S; Kim YD; Ganteför GF; Fairbrother DH; Heiz U; Bowen KH; Proch S
    Phys Chem Chem Phys; 2014 Apr; 16(14):6735-42. PubMed ID: 24590068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unraveling the mechanisms of O2 activation by size-selected gold clusters: transition from superoxo to peroxo chemisorption.
    Pal R; Wang LM; Pei Y; Wang LS; Zeng XC
    J Am Chem Soc; 2012 Jun; 134(22):9438-45. PubMed ID: 22571281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Time and temperature effects on the digestive ripening of gold nanoparticles: is there a crossover from digestive ripening to Ostwald ripening?
    Sahu P; Prasad BL
    Langmuir; 2014 Sep; 30(34):10143-50. PubMed ID: 25111614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The definition of "critical radius" for a collection of nanoparticles undergoing Ostwald ripening.
    Houk LR; Challa SR; Grayson B; Fanson P; Datye AK
    Langmuir; 2009 Oct; 25(19):11225-7. PubMed ID: 19715330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.