These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26544945)

  • 1. No Evidence for Cardiomyocyte Number Expansion in Preadolescent Mice.
    Alkass K; Panula J; Westman M; Wu TD; Guerquin-Kern JL; Bergmann O
    Cell; 2015 Nov; 163(4):1026-36. PubMed ID: 26544945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferation at the heart of preadolescence.
    Palpant NJ; Murry CE
    Cell; 2014 May; 157(4):765-7. PubMed ID: 24813600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proliferative burst during preadolescence establishes the final cardiomyocyte number.
    Naqvi N; Li M; Calvert JW; Tejada T; Lambert JP; Wu J; Kesteven SH; Holman SR; Matsuda T; Lovelock JD; Howard WW; Iismaa SE; Chan AY; Crawford BH; Wagner MB; Martin DI; Lefer DJ; Graham RM; Husain A
    Cell; 2014 May; 157(4):795-807. PubMed ID: 24813607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting Preadolescent Cardiomyocyte Proliferation in Mice.
    Hirai M; Cattaneo P; Chen J; Evans SM
    Circ Res; 2016 Mar; 118(6):916-919. PubMed ID: 26987912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice.
    Ali SR; Hippenmeyer S; Saadat LV; Luo L; Weissman IL; Ardehali R
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8850-5. PubMed ID: 24876275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Regulation of Heart Regeneration: An Evolutionary Tradeoff.
    Elhelaly WM; Lam NT; Hamza M; Xia S; Sadek HA
    Front Cell Dev Biol; 2016; 4():137. PubMed ID: 28018900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscling up the heart: a preadolescent cardiomyocyte proliferation contributes to heart growth.
    Zhang CH; Kühn B
    Circ Res; 2014 Sep; 115(8):690-2. PubMed ID: 25258401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiomyocyte proliferation contributes to heart growth in young humans.
    Mollova M; Bersell K; Walsh S; Savla J; Das LT; Park SY; Silberstein LE; Dos Remedios CG; Graham D; Colan S; Kühn B
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1446-51. PubMed ID: 23302686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiomyocyte Cell-Cycle Activity during Preadolescence.
    Soonpaa MH; Zebrowski DC; Platt C; Rosenzweig A; Engel FB; Field LJ
    Cell; 2015 Nov; 163(4):781-2. PubMed ID: 26544927
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation.
    Lopaschuk GD; Jaswal JS
    J Cardiovasc Pharmacol; 2010 Aug; 56(2):130-40. PubMed ID: 20505524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic changes in the cardiac methylome during postnatal development.
    Sim CB; Ziemann M; Kaspi A; Harikrishnan KN; Ooi J; Khurana I; Chang L; Hudson JE; El-Osta A; Porrello ER
    FASEB J; 2015 Apr; 29(4):1329-43. PubMed ID: 25491312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A p53-based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration.
    Xiao Q; Zhang G; Wang H; Chen L; Lu S; Pan D; Liu G; Yang Z
    Development; 2017 Feb; 144(4):580-589. PubMed ID: 28087623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.
    Kreipke RE; Birren SJ
    J Physiol; 2015 Dec; 593(23):5057-73. PubMed ID: 26420487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroid hormone action in postnatal heart development.
    Li M; Iismaa SE; Naqvi N; Nicks A; Husain A; Graham RM
    Stem Cell Res; 2014 Nov; 13(3 Pt B):582-91. PubMed ID: 25087894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle regulation in mouse heart during embryonic and postnatal stages.
    Ikenishi A; Okayama H; Iwamoto N; Yoshitome S; Tane S; Nakamura K; Obayashi T; Hayashi T; Takeuchi T
    Dev Growth Differ; 2012 Oct; 54(8):731-8. PubMed ID: 22957921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development.
    Dorr KM; Amin NM; Kuchenbrod LM; Labiner H; Charpentier MS; Pevny LH; Wessels A; Conlon FL
    Development; 2015 Jun; 142(11):2037-47. PubMed ID: 25953344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes.
    Zebrowski DC; Vergarajauregui S; Wu CC; Piatkowski T; Becker R; Leone M; Hirth S; Ricciardi F; Falk N; Giessl A; Just S; Braun T; Weidinger G; Engel FB
    Elife; 2015 Aug; 4():. PubMed ID: 26247711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiomyocyte death and renewal in the normal and diseased heart.
    Buja LM; Vela D
    Cardiovasc Pathol; 2008; 17(6):349-74. PubMed ID: 18402842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of microRNA during cardiomyocyte maturation in sheep.
    Morrison JL; Zhang S; Tellam RL; Brooks DA; McMillen IC; Porrello ER; Botting KJ
    BMC Genomics; 2015 Jul; 16(1):541. PubMed ID: 26198574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome.
    Gan J; Sonntag HJ; Tang MK; Cai D; Lee KK
    PLoS One; 2015; 10(7):e0133288. PubMed ID: 26200114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.