These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26545162)

  • 1. Experiments on and Numerical Modeling of the Capture and Concentration of Transcription-Translation Machinery inside Vesicles.
    Mavelli F; Stano P
    Artif Life; 2015; 21(4):445-63. PubMed ID: 26545162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: a review.
    Altamura E; Carrara P; D'Angelo F; Mavelli F; Stano P
    Synth Biol (Oxf); 2018; 3(1):ysy011. PubMed ID: 32995519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes.
    D'Aguanno E; Altamura E; Mavelli F; Fahr A; Stano P; Luisi PL
    Life (Basel); 2015 Mar; 5(1):969-96. PubMed ID: 25793278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of ferritin, ribosomes, and ribo-peptidic complexes inside liposomes: insights into the origin of metabolism.
    de Souza TP; Stano P; Steiniger F; D'Aguanno E; Altamura E; Fahr A; Luisi PL
    Orig Life Evol Biosph; 2012 Oct; 42(5):421-8. PubMed ID: 23080007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous encapsulation and concentration of biological macromolecules in liposomes: an intriguing phenomenon and its relevance in origins of life.
    de Souza TP; Fahr A; Luisi PL; Stano P
    J Mol Evol; 2014 Dec; 79(5-6):179-92. PubMed ID: 25416509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous crowding of ribosomes and proteins inside vesicles: a possible mechanism for the origin of cell metabolism.
    Pereira de Souza T; Steiniger F; Stano P; Fahr A; Luisi PL
    Chembiochem; 2011 Oct; 12(15):2325-30. PubMed ID: 21830290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the emergent properties of a synthetic quasi-cellular system.
    Lazzerini-Ospri L; Stano P; Luisi P; Marangoni R
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S9. PubMed ID: 22536976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A renewal model for the emergence of anomalous solute crowding in liposomes.
    Paradisi P; Allegrini P; Chiarugi D
    BMC Syst Biol; 2015; 9 Suppl 3(Suppl 3):S7. PubMed ID: 26051120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple Protein Synthesis Model for the PURE System Operation.
    Mavelli F; Marangoni R; Stano P
    Bull Math Biol; 2015 Jun; 77(6):1185-212. PubMed ID: 25911591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal cells: relevance and interplay of physical and biochemical factors.
    Stano P
    Biotechnol J; 2011 Jul; 6(7):850-9. PubMed ID: 21648093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Expression Inside Liposomes: From Early Studies to Current Protocols.
    Stano P
    Chemistry; 2019 Jun; 25(33):7798-7814. PubMed ID: 30889296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis.
    Pereira de Souza T; Stano P; Luisi PL
    Chembiochem; 2009 Apr; 10(6):1056-63. PubMed ID: 19263449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-synthetic minimal cells: origin and recent developments.
    Stano P; Luisi PL
    Curr Opin Biotechnol; 2013 Aug; 24(4):633-8. PubMed ID: 23374484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking genotype and phenotype in protein synthesizing liposomes with external supply of resources.
    Nourian Z; Danelon C
    ACS Synth Biol; 2013 Apr; 2(4):186-93. PubMed ID: 23656477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell.
    Caschera F; Noireaux V
    Artif Life; 2016; 22(2):185-95. PubMed ID: 26934095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells.
    Stano P; Luisi PL
    Chem Commun (Camb); 2010 Jun; 46(21):3639-53. PubMed ID: 20442914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic simulations of minimal cells: the Ribocell model.
    Mavelli F
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S10. PubMed ID: 22536956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry.
    Nishimura K; Matsuura T; Nishimura K; Sunami T; Suzuki H; Yomo T
    Langmuir; 2012 Jun; 28(22):8426-32. PubMed ID: 22578080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into the Growth and Transformation of Vesicles: A Free-Flow Electrophoresis Study.
    Pereira de Souza T; Holzer M; Stano P; Steiniger F; May S; Schubert R; Fahr A; Luisi PL
    J Phys Chem B; 2015 Sep; 119(37):12212-23. PubMed ID: 26340300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein.
    Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.