These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 26545227)
1. Effectiveness of a Novel Augmented Reality-Based Navigation System in Treatment of Orbital Hypertelorism. Zhu M; Chai G; Lin L; Xin Y; Tan A; Bogari M; Zhang Y; Li Q Ann Plast Surg; 2016 Dec; 77(6):662-668. PubMed ID: 26545227 [TBL] [Abstract][Full Text] [Related]
2. How Accurate Is Computer-Assisted Orbital Hypertelorism Surgery? Comparison of the Three-Dimensional Surgical Planning with the Postoperative Outcomes. Batut C; Paré A; Kulker D; Listrat A; Laure B Facial Plast Surg Aesthet Med; 2020; 22(6):433-440. PubMed ID: 32654512 [No Abstract] [Full Text] [Related]
3. Reconstructive Operation of Severe Orbital Hypertelorism With Computer-Assisted Precise Virtual Plan. Ouyang L; Li B; Xu S; Jin Q; Chen Y; Gui L; Fu J; Niu F J Craniofac Surg; 2023 Mar-Apr 01; 34(2):511-514. PubMed ID: 36217222 [TBL] [Abstract][Full Text] [Related]
4. Hypertelorism: the importance of three-dimensional imaging and trends in the surgical correction by facial bipartition. Moreira Gonzalez A; Elahi M; Barakat K; Yavuzer R; Brinkmann B; Jackson IT Plast Reconstr Surg; 2005 May; 115(6):1537-46. PubMed ID: 15861056 [TBL] [Abstract][Full Text] [Related]
5. The value of three-dimensional printing modelling for surgical correction of orbital hypertelorism. Engel M; Hoffmann J; Castrillon-Oberndorfer G; Freudlsperger C Oral Maxillofac Surg; 2015 Mar; 19(1):91-5. PubMed ID: 25249178 [TBL] [Abstract][Full Text] [Related]
6. Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms--A feasibility study. Lin L; Shi Y; Tan A; Bogari M; Zhu M; Xin Y; Xu H; Zhang Y; Xie L; Chai G J Craniomaxillofac Surg; 2016 Feb; 44(2):215-23. PubMed ID: 26718052 [TBL] [Abstract][Full Text] [Related]
7. 3D visualization and simulation in surgical planning system of orbital hypertelorism. Xie K; Yang S; Zhu YM J Med Syst; 2011 Aug; 35(4):617-23. PubMed ID: 20703527 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the 3D Augmented Reality-Guided Intraoperative Positioning of Dental Implants in Edentulous Mandibular Models. Jiang W; Ma L; Zhang B; Fan Y; Qu X; Zhang X; Liao H Int J Oral Maxillofac Implants; 2018; 33(6):1219-1228. PubMed ID: 30427952 [TBL] [Abstract][Full Text] [Related]
9. Hybrid navigation interface for orthopedic and trauma surgery. Traub J; Stefan P; Heining SM; Sielhorst T; Riquarts C; Euler E; Navab N Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):373-80. PubMed ID: 17354912 [TBL] [Abstract][Full Text] [Related]
10. Implementation of augmented reality support in spine surgery. Carl B; Bopp M; Saß B; Voellger B; Nimsky C Eur Spine J; 2019 Jul; 28(7):1697-1711. PubMed ID: 30953169 [TBL] [Abstract][Full Text] [Related]
11. Does intraoperative navigation improve the accuracy of mandibular angle osteotomy: Comparison between augmented reality navigation, individualised templates and free-hand techniques. Zhu M; Liu F; Zhou C; Lin L; Zhang Y; Chai G; Xie L; Qi F; Li Q J Plast Reconstr Aesthet Surg; 2018 Aug; 71(8):1188-1195. PubMed ID: 29729839 [TBL] [Abstract][Full Text] [Related]
12. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. Badiali G; Ferrari V; Cutolo F; Freschi C; Caramella D; Bianchi A; Marchetti C J Craniomaxillofac Surg; 2014 Dec; 42(8):1970-6. PubMed ID: 25441867 [TBL] [Abstract][Full Text] [Related]
13. Quantitative assessment of osseous, ocular, and periocular changes after hypertelorism surgery. Panchal J; Kim YO; Stelnicki E; Pilgram T; Marsh JL Plast Reconstr Surg; 1999 Jul; 104(1):16-28. PubMed ID: 10597670 [TBL] [Abstract][Full Text] [Related]
14. Precise positioning of an intraoral distractor using augmented reality in patients with hemifacial microsomia. Qu M; Hou Y; Xu Y; Shen C; Zhu M; Xie L; Wang H; Zhang Y; Chai G J Craniomaxillofac Surg; 2015 Jan; 43(1):106-12. PubMed ID: 25465484 [TBL] [Abstract][Full Text] [Related]
15. Use of augmented reality navigation to optimise the surgical management of craniofacial fibrous dysplasia. Gao Y; Liu K; Lin L; Wang X; Xie L Br J Oral Maxillofac Surg; 2022 Feb; 60(2):162-167. PubMed ID: 34930644 [TBL] [Abstract][Full Text] [Related]
16. Can Augmented Reality Be Helpful in Pelvic Bone Cancer Surgery? An In Vitro Study. Cho HS; Park MS; Gupta S; Han I; Kim HS; Choi H; Hong J Clin Orthop Relat Res; 2018 Sep; 476(9):1719-1725. PubMed ID: 30794209 [TBL] [Abstract][Full Text] [Related]
17. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study. Suenaga H; Hoang Tran H; Liao H; Masamune K; Dohi T; Hoshi K; Mori Y; Takato T Int J Oral Sci; 2013 Jun; 5(2):98-102. PubMed ID: 23703710 [TBL] [Abstract][Full Text] [Related]
18. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Wang J; Suenaga H; Liao H; Hoshi K; Yang L; Kobayashi E; Sakuma I Comput Med Imaging Graph; 2015 Mar; 40():147-59. PubMed ID: 25465067 [TBL] [Abstract][Full Text] [Related]
19. A novel portable augmented reality surgical navigation system for maxillofacial surgery: technique and accuracy study. Li B; Wei H; Yan J; Wang X Int J Oral Maxillofac Surg; 2024 Nov; 53(11):961-967. PubMed ID: 38839534 [TBL] [Abstract][Full Text] [Related]
20. Navigation surgery using an augmented reality for pancreatectomy. Okamoto T; Onda S; Yasuda J; Yanaga K; Suzuki N; Hattori A Dig Surg; 2015; 32(2):117-23. PubMed ID: 25766302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]