These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26545372)

  • 1. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.
    Liu WC; Chan WT
    Environ Monit Assess; 2015 Dec; 187(12):728. PubMed ID: 26545372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling fecal coliform contamination in a tidal Danshuei River estuarine system.
    Liu WC; Chan WT; Young CC
    Sci Total Environ; 2015 Jan; 502():632-40. PubMed ID: 25302451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the fate and transport of fecal coliform contamination in a tidal estuarine system using a three-dimensional model.
    Chen WB; Liu WC
    Mar Pollut Bull; 2017 Mar; 116(1-2):365-384. PubMed ID: 28117132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty assessment for three-dimensional hydrodynamic and fecal coliform modeling in the Danshuei River estuarine system: The influence of first-order parametric decay reaction.
    Young CC; Liu WC; Liu HM
    Mar Pollut Bull; 2023 Aug; 193():115220. PubMed ID: 37390625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the transport and distribution of fecal coliform in a tidal estuary.
    Liu WC; Huang WC
    Sci Total Environ; 2012 Aug; 431():1-8. PubMed ID: 22652036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A changing estuary: Understanding historical patterns in salinity and fecal coliform levels in the May River, SC.
    Soueidan J; Warren A; Pearson M; Montie EW
    Mar Pollut Bull; 2021 Jul; 168():112384. PubMed ID: 33901906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional modeling of fecal coliform in the Tidal Basin and Washington Channel, Washington, DC.
    Bai S; Lung WS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1327-46. PubMed ID: 16854806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of salinity intrusion in the James and Chickahominy Rivers as a result of simulated sea-level rise in Chesapeake Bay, East Coast, USA.
    Rice KC; Hong B; Shen J
    J Environ Manage; 2012 Nov; 111():61-9. PubMed ID: 22820747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the influence of nutrient reduction on water quality using a three-dimensional model: case study in a tidal estuarine system.
    Liu WC; Chan WT
    Environ Monit Assess; 2014 Dec; 186(12):8807-25. PubMed ID: 25223533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate relationships to fecal bacterial densities in Maryland shellfish harvest waters.
    Leight AK; Hood R; Wood R; Brohawn K
    Water Res; 2016 Feb; 89():270-81. PubMed ID: 26689664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of inter-annual variations in climatic factors on fecal coliform levels in Mississippi Sound.
    Chigbu P; Gordon S; Strange T
    Water Res; 2004 Dec; 38(20):4341-52. PubMed ID: 15556209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the fecal coliform total maximum daily load using Loading Simulation Program C++ and tidal prism model in estuarine shellfish growing areas: a case study in the Nassawadox coastal embayment, Virginia.
    Shen J; Sun S; Wang T
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(9):1791-807. PubMed ID: 16134369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fecal coliform modeling under two flow scenarios in St. Louis Bay of Mississippi.
    Liu Z; Hashim NB; Kingery WL; Huddleston DH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):282-91. PubMed ID: 20390869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer modeling of fecal coliform contamination of an urban estuarine system.
    Scarlatos PD
    Water Sci Technol; 2001; 44(7):9-16. PubMed ID: 11724500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and distribution of manganese in tidal estuarine system in Taiwan.
    Liu WC; Ken PJ; Liu HM
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):510-531. PubMed ID: 31802339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the utility of shellfish sanitation monitoring data for long-term estuarine water quality analysis.
    Chazal N; Carr M; Haines A; Leight AK; Nelson NG
    Mar Pollut Bull; 2024 Jun; 203():116465. PubMed ID: 38723549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study.
    Yang J; Graf T; Ptak T
    J Contam Hydrol; 2015; 177-178():107-21. PubMed ID: 25889797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of the tidal influence on bacterial populations in a monsoon influenced estuary through simultaneous observations.
    Khandeparker L; Eswaran R; Gardade L; Kuchi N; Mapari K; Naik SD; Anil AC
    Environ Monit Assess; 2017 Jan; 189(1):41. PubMed ID: 28035613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical models of fecal coliform levels in Pacific Northwest estuaries for improved shellfish harvest area closure decision making.
    Zimmer-Faust AG; Brown CA; Manderson A
    Mar Pollut Bull; 2018 Dec; 137():360-369. PubMed ID: 30503445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.