These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
468 related articles for article (PubMed ID: 26545398)
21. Expression of c-kit and kit-ligand in benign and malignant prostatic tissues. Simak R; Capodieci P; Cohen DW; Fair WR; Scher H; Melamed J; Drobnjak M; Heston WD; Stix U; Steiner G; Cordon-Cardo C Histol Histopathol; 2000 Apr; 15(2):365-74. PubMed ID: 10809354 [TBL] [Abstract][Full Text] [Related]
22. Metabolomic profiling for the identification of novel diagnostic markers in prostate cancer. Lucarelli G; Rutigliano M; Galleggiante V; Giglio A; Palazzo S; Ferro M; Simone C; Bettocchi C; Battaglia M; Ditonno P Expert Rev Mol Diagn; 2015; 15(9):1211-24. PubMed ID: 26174441 [TBL] [Abstract][Full Text] [Related]
23. Nuclear magnetic resonance-based metabolomics and metabolic pathway networks from patient-matched esophageal carcinoma, adjacent noncancerous tissues and urine. Liang JH; Lin Y; Ouyang T; Tang W; Huang Y; Ye W; Zhao JY; Wang ZN; Ma CC World J Gastroenterol; 2019 Jul; 25(25):3218-3230. PubMed ID: 31333313 [TBL] [Abstract][Full Text] [Related]
24. Comprehensive biomarker profiles and chemometric filtering of urinary metabolomics for effective discrimination of prostate carcinoma from benign hyperplasia. Amante E; Cerrato A; Alladio E; Capriotti AL; Cavaliere C; Marini F; Montone CM; Piovesana S; Laganà A; Vincenti M Sci Rep; 2022 Mar; 12(1):4361. PubMed ID: 35288652 [TBL] [Abstract][Full Text] [Related]
25. Distinctive gene expression of prostatic stromal cells cultured from diseased versus normal tissues. Zhao H; Ramos CF; Brooks JD; Peehl DM J Cell Physiol; 2007 Jan; 210(1):111-21. PubMed ID: 17044071 [TBL] [Abstract][Full Text] [Related]
26. NMR spectroscopy of filtered serum of prostate cancer: A new frontier in metabolomics. Kumar D; Gupta A; Mandhani A; Sankhwar SN Prostate; 2016 Sep; 76(12):1106-19. PubMed ID: 27197810 [TBL] [Abstract][Full Text] [Related]
27. Gene expression profiles of lysophosphatidic acid-related molecules in the prostate: relevance to prostate cancer and benign hyperplasia. Zeng Y; Kakehi Y; Nouh MA; Tsunemori H; Sugimoto M; Wu XX Prostate; 2009 Feb; 69(3):283-92. PubMed ID: 19025891 [TBL] [Abstract][Full Text] [Related]
28. PSGR2, a novel G-protein coupled receptor, is overexpressed in human prostate cancer. Weng J; Wang J; Hu X; Wang F; Ittmann M; Liu M Int J Cancer; 2006 Mar; 118(6):1471-80. PubMed ID: 16206286 [TBL] [Abstract][Full Text] [Related]
29. Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Grzmil M; Thelen P; Hemmerlein B; Schweyer S; Voigt S; Mury D; Burfeind P Am J Pathol; 2003 Aug; 163(2):543-52. PubMed ID: 12875974 [TBL] [Abstract][Full Text] [Related]
30. The prostate cancer immunome: In silico functional analysis of antigenic proteins from microarray profiling with IgG. Luna-Coronell JA; Vierlinger K; Gamperl M; Hofbauer J; Berger I; Weinhäusel A Proteomics; 2016 Apr; 16(8):1204-14. PubMed ID: 27089054 [TBL] [Abstract][Full Text] [Related]
31. Expression and significance of S100P, CD147, and OCT4 in different prostate cancer tissue TNM stages. Wang Q; Zhang JG; Wang W Genet Mol Res; 2015 Jun; 14(2):6844-51. PubMed ID: 26125892 [TBL] [Abstract][Full Text] [Related]
32. Differential expression of transforming growth factor-beta 1 and beta 3 as well as c-fos mRNA in normal human prostate, benign prostatic hyperplasia and prostatic cancer. Merz VW; Arnold AM; Studer UE World J Urol; 1994; 12(2):96-8. PubMed ID: 7522082 [TBL] [Abstract][Full Text] [Related]
33. Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. Jing C; El-Ghany MA; Beesley C; Foster CS; Rudland PS; Smith P; Ke Y J Natl Cancer Inst; 2002 Apr; 94(7):482-90. PubMed ID: 11929948 [TBL] [Abstract][Full Text] [Related]
34. Human pHyde is not a classical tumor suppressor gene in prostate cancer. Porkka KP; Nupponen NN; Tammela TL; Vessella RL; Visakorpi T Int J Cancer; 2003 Sep; 106(5):729-35. PubMed ID: 12866033 [TBL] [Abstract][Full Text] [Related]
35. Integration of transcriptomics and metabolomics reveals anlotinib-induced cytotoxicity in colon cancer cells. Jia Z; Zhang Z; Tian Q; Wu H; Xie Y; Li A; Zhang H; Yang Z; Zhang X Gene; 2021 Jun; 786():145625. PubMed ID: 33798683 [TBL] [Abstract][Full Text] [Related]
36. Cell metabolomics identify regulatory pathways and targets of magnoline against prostate cancer. Sun H; Zhang AH; Liu SB; Qiu S; Li XN; Zhang TL; Liu L; Wang XJ J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Dec; 1102-1103():143-151. PubMed ID: 30391728 [TBL] [Abstract][Full Text] [Related]
37. The role of the transcription factor SIM2 in prostate cancer. Lu B; Asara JM; Sanda MG; Arredouani MS PLoS One; 2011; 6(12):e28837. PubMed ID: 22174909 [TBL] [Abstract][Full Text] [Related]
38. Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines. Chakrabarti R; Robles LD; Gibson J; Muroski M Cancer Genet Cytogenet; 2002 Dec; 139(2):115-25. PubMed ID: 12550771 [TBL] [Abstract][Full Text] [Related]
39. Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. Cordon-Cardo C; Koff A; Drobnjak M; Capodieci P; Osman I; Millard SS; Gaudin PB; Fazzari M; Zhang ZF; Massague J; Scher HI J Natl Cancer Inst; 1998 Sep; 90(17):1284-91. PubMed ID: 9731735 [TBL] [Abstract][Full Text] [Related]