These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26545408)

  • 1. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.
    Luska KL; Migowski P; El Sayed S; Leitner W
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15750-5. PubMed ID: 26545408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic Nanoparticles in Supported Ionic Liquid Phases as Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates.
    Offner-Marko L; Bordet A; Moos G; Tricard S; Rengshausen S; Chaudret B; Luska KL; Leitner W
    Angew Chem Int Ed Engl; 2018 Sep; 57(39):12721-12726. PubMed ID: 30176102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective hydrodeoxygenation of lignin-derived phenolic monomers to cyclohexanol over tungstated zirconia supported ruthenium catalysts.
    Gan Q; Zhou W; Zhang X; Lin Y; Huang S; Lu GP
    ChemSusChem; 2024 Jun; ():e202400644. PubMed ID: 38923356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.
    Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B
    ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Hydrogenation of CO
    Louis Anandaraj SJ; Kang L; DeBeer S; Bordet A; Leitner W
    Small; 2023 May; 19(18):e2206806. PubMed ID: 36709493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts.
    Levin N; Goclik L; Walschus H; Antil N; Bordet A; Leitner W
    J Am Chem Soc; 2023 Oct; 145(41):22845-22854. PubMed ID: 37815193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks.
    Bazhenova MA; Kulikov LA; Makeeva DA; Maximov AL; Karakhanov EA
    Polymers (Basel); 2023 Dec; 15(23):. PubMed ID: 38232050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst.
    Moos G; Emondts M; Bordet A; Leitner W
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11977-11983. PubMed ID: 32220119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rh NPs Immobilized on Phosphonium- based Supported Ionic Liquid Phases (Rh@SILPs) as Hydrogenation Catalysts.
    Zenner J; Moos G; Luska KL; Bordet A; Leitner W
    Chimia (Aarau); 2021 Sep; 75(9):724-732. PubMed ID: 34526177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Control of the Catalytic Properties of Rhodium Nanoparticles in Supported Ionic Liquid Phase (SILP) Systems.
    Bordet A; Moos G; Welsh C; Licence P; Luska KL; Leitner W
    ACS Catal; 2020 Dec; 10(23):13904-13912. PubMed ID: 33343998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.
    Wang H; Wang H; Kuhn E; Tucker MP; Yang B
    ChemSusChem; 2018 Jan; 11(1):285-291. PubMed ID: 29136337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.
    Chen J; Wang S; Huang J; Chen L; Ma L; Huang X
    ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis.
    Bordet A; Leitner W
    Acc Chem Res; 2021 May; 54(9):2144-2157. PubMed ID: 33822579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective hydrodeoxygenation of hydroxyacetophenones to ethyl-substituted phenol derivatives using a FeRu@SILP catalyst.
    Goclik L; Offner-Marko L; Bordet A; Leitner W
    Chem Commun (Camb); 2020 Aug; 56(66):9509-9512. PubMed ID: 32686801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of molecular catalysts in supported ionic liquid phases.
    Van Doorslaer C; Wahlen J; Mertens P; Binnemans K; De Vos D
    Dalton Trans; 2010 Sep; 39(36):8377-90. PubMed ID: 20419187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst.
    Li Z; Liu Y; Liu C; Wu S; Wei W
    Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient hydrodeoxygenation of lignin-derived phenolic compounds over bifunctional catalyst comprising H4PMo11VO40 coupled with Ni/C.
    Yin T; Luo Y; Chauhan AS; Shu R; Tian Z; Wang C; Chen Y; Gupta NK
    Chemphyschem; 2024 Jul; ():e202400505. PubMed ID: 38978281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.
    Anderson E; Crisci A; Murugappan K; Román-Leshkov Y
    ChemSusChem; 2017 May; 10(10):2226-2234. PubMed ID: 28371565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodeoxygenation of Bio-Derived Phenol to Cyclohexane Fuel Catalyzed by Bifunctional Mesoporous Organic-Inorganic Hybrids.
    Mo L; Yu W; Cai H; Lou H; Zheng X
    Front Chem; 2018; 6():216. PubMed ID: 29963548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.