These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 26545758)
1. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase. Šokarda Slavić M; Pešić M; Vujčić Z; Božić N Appl Microbiol Biotechnol; 2016 Mar; 100(6):2709-19. PubMed ID: 26545758 [TBL] [Abstract][Full Text] [Related]
2. Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch. Foresti ML; Williams Mdel P; Martínez-García R; Vázquez A Carbohydr Polym; 2014 Feb; 102():80-7. PubMed ID: 24507258 [TBL] [Abstract][Full Text] [Related]
3. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization. Božić N; Slavić MŠ; Gavrilović A; Vujčić Z Bioprocess Biosyst Eng; 2014 Jul; 37(7):1353-60. PubMed ID: 24385152 [TBL] [Abstract][Full Text] [Related]
4. Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23. Lo HF; Lin LL; Chiang WY; Chie MC; Hsu WH; Chang CT Arch Microbiol; 2002 Aug; 178(2):115-23. PubMed ID: 12115056 [TBL] [Abstract][Full Text] [Related]
5. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate. Okamoto S; Chin T; Nagata K; Takahashi T; Ohara H; Aso Y J Biosci Bioeng; 2015 May; 119(5):548-53. PubMed ID: 25468427 [TBL] [Abstract][Full Text] [Related]
6. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis. Baks T; Bruins ME; Matser AM; Janssen AE; Boom RM J Agric Food Chem; 2008 Jan; 56(2):488-95. PubMed ID: 18095648 [TBL] [Abstract][Full Text] [Related]
7. Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Puspasari F; Radjasa OK; Noer AS; Nurachman Z; Syah YM; van der Maarel M; Dijkhuizen L; Janeček S; Natalia D J Appl Microbiol; 2013 Jan; 114(1):108-20. PubMed ID: 23020612 [TBL] [Abstract][Full Text] [Related]
8. In depth study of a new highly efficient raw starch hydrolyzing α-amylase from Rhizomucor sp. Tawil G; Viksø-Nielsen A; Rolland-Sabaté A; Colonna P; Buléon A Biomacromolecules; 2011 Jan; 12(1):34-42. PubMed ID: 21158480 [TBL] [Abstract][Full Text] [Related]
9. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis. Qin F; Man J; Xu B; Hu M; Gu M; Liu Q; Wei C J Agric Food Chem; 2011 Dec; 59(23):12667-73. PubMed ID: 22059442 [TBL] [Abstract][Full Text] [Related]
10. Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Xiao Z; Wu M; Grosse S; Beauchemin M; Lévesque M; Lau PC Appl Biochem Biotechnol; 2014 Jan; 172(1):73-86. PubMed ID: 24046254 [TBL] [Abstract][Full Text] [Related]
11. Cloning and extracellular expression of a raw starch digesting α-amylase (Blamy-I) and its application in bioethanol production from a non-conventional source of starch. Roy JK; Manhar AK; Nath D; Mandal M; Mukherjee AK J Basic Microbiol; 2015 Nov; 55(11):1287-98. PubMed ID: 26135919 [TBL] [Abstract][Full Text] [Related]
12. Cloning and expression of raw-starch-digesting alpha-amylase gene from Bacillus circulans F-2 in Escherichia coli. Kim CH; Sata H; Taniguchi H; Maruyama Y Biochim Biophys Acta; 1990 Apr; 1048(2-3):223-30. PubMed ID: 2182125 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of resistant starch type III from enzymatically hydrolyzed maize flour. Khan A; Rahman UU; Siddiqui S; Irfan M; Shah AA; Badshah M; Hasan F; Khan S Mol Biol Rep; 2019 Aug; 46(4):4565-4580. PubMed ID: 31243724 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol. Tang S; Xu T; Peng J; Zhou K; Zhu Y; Zhou W; Cheng H; Zhou H J Sci Food Agric; 2020 May; 100(7):3013-3023. PubMed ID: 32056215 [TBL] [Abstract][Full Text] [Related]
15. Purification and characterization of thermostable α-amylase produced from Bacillus licheniformis So-B3 and its potential in hydrolyzing raw starch. Fincan SA; Özdemir S; Karakaya A; Enez B; Mustafov SD; Ulutaş MS; Şen F Life Sci; 2021 Jan; 264():118639. PubMed ID: 33141041 [TBL] [Abstract][Full Text] [Related]
16. Extensive hydrolysis of raw rice starch by a chimeric α-amylase engineered with α-amylase (AmyP) and a starch-binding domain from Cryptococcus sp. S-2. Peng H; Li R; Li F; Zhai L; Zhang X; Xiao Y; Gao Y Appl Microbiol Biotechnol; 2018 Jan; 102(2):743-750. PubMed ID: 29159586 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS. Shewale SD; Pandit AB Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436 [TBL] [Abstract][Full Text] [Related]
18. Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase and an alpha-amylase from a Bacillus circulans strain. Watanabe H; Nishimoto T; Kubota M; Chaen H; Fukuda S Biosci Biotechnol Biochem; 2006 Nov; 70(11):2690-702. PubMed ID: 17090949 [TBL] [Abstract][Full Text] [Related]
19. Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis alpha-amylases and insights into engineering alpha-amylase variants active under acidic conditions. Lee S; Oneda H; Minoda M; Tanaka A; Inouye K J Biochem; 2006 Jun; 139(6):997-1005. PubMed ID: 16788050 [TBL] [Abstract][Full Text] [Related]