These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26545796)

  • 1. A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.
    Richards CD; Warr CG; Burke R
    Int J Biochem Cell Biol; 2015 Dec; 69():11-9. PubMed ID: 26545796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues.
    Richards CD; Burke R
    Biometals; 2015 Dec; 28(6):967-74. PubMed ID: 26411574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentalized zinc deficiency and toxicities caused by ZnT and Zip gene over expression result in specific phenotypes in Drosophila.
    Dechen K; Richards CD; Lye JC; Hwang JE; Burke R
    Int J Biochem Cell Biol; 2015 Mar; 60():23-33. PubMed ID: 25562517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuolar-type H(+)-ATPase subunits and the neurogenic protein big brain are required for optimal copper and zinc uptake.
    Wang J; Binks T; Warr CG; Burke R
    Metallomics; 2014 Nov; 6(11):2100-8. PubMed ID: 25209718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary zinc absorption: A play of Zips and ZnTs in the gut.
    Wang X; Zhou B
    IUBMB Life; 2010 Mar; 62(3):176-82. PubMed ID: 20120011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila ZnT1 is essential in the intestine for dietary zinc absorption.
    Wang Z; Li X; Zhou B
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1004-1011. PubMed ID: 33012507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster.
    Lye JC; Richards CD; Dechen K; Paterson D; de Jonge MD; Howard DL; Warr CG; Burke R
    J Exp Biol; 2012 Sep; 215(Pt 18):3254-65. PubMed ID: 22693027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation and function of Zip4, the acrodermatitis enteropathica gene.
    Andrews GK
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1242-6. PubMed ID: 19021533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gastrointestinal factors influencing zinc absorption and homeostasis.
    Cousins RJ
    Int J Vitam Nutr Res; 2010 Oct; 80(4-5):243-8. PubMed ID: 21462106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional studies of Drosophila zinc transporters reveal the mechanism for dietary zinc absorption and regulation.
    Qin Q; Wang X; Zhou B
    BMC Biol; 2013 Sep; 11():101. PubMed ID: 24063361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes.
    Lye JC; Richards CD; Dechen K; Warr CG; Burke R
    J Biol Inorg Chem; 2013 Mar; 18(3):323-32. PubMed ID: 23322169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster.
    Wang X; Wu Y; Zhou B
    FASEB J; 2009 Aug; 23(8):2650-61. PubMed ID: 19325039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice.
    Dufner-Beattie J; Wang F; Kuo YM; Gitschier J; Eide D; Andrews GK
    J Biol Chem; 2003 Aug; 278(35):33474-81. PubMed ID: 12801924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.
    Hashimoto A; Ohkura K; Takahashi M; Kizu K; Narita H; Enomoto S; Miyamae Y; Masuda S; Nagao M; Irie K; Ohigashi H; Andrews GK; Kambe T
    Biochem J; 2015 Dec; 472(2):183-93. PubMed ID: 26385990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5.
    Dufner-Beattie J; Kuo YM; Gitschier J; Andrews GK
    J Biol Chem; 2004 Nov; 279(47):49082-90. PubMed ID: 15358787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity.
    Richards CD; Warr CG; Burke R
    PLoS One; 2017; 12(7):e0181237. PubMed ID: 28704512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport.
    Zhang T; Kuliyev E; Sui D; Hu J
    Biochem J; 2019 Jun; 476(12):1791-1803. PubMed ID: 31164399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter.
    Wang F; Kim BE; Dufner-Beattie J; Petris MJ; Andrews G; Eide DJ
    Hum Mol Genet; 2004 Mar; 13(5):563-71. PubMed ID: 14709598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc transporter mutations linked to acrodermatitis enteropathica disrupt function and cause mistrafficking.
    Kuliyev E; Zhang C; Sui D; Hu J
    J Biol Chem; 2021; 296():100269. PubMed ID: 33837739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and regulation of SLC39A family zinc transporters in the developing mouse intestine.
    Huang ZL; Dufner-Beattie J; Andrews GK
    Dev Biol; 2006 Jul; 295(2):571-9. PubMed ID: 16682017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.