These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26545800)

  • 1. 16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus.
    Kyuma T; Kizaki H; Ryuno H; Sekimizu K; Kaito C
    Biochimie; 2015 Dec; 119():166-74. PubMed ID: 26545800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal RNA methyltransferases contribute to Staphylococcus aureus virulence.
    Kyuma T; Kimura S; Hanada Y; Suzuki T; Sekimizu K; Kaito C
    FEBS J; 2015 Jul; 282(13):2570-84. PubMed ID: 25893373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA.
    Connolly K; Rife JP; Culver G
    Mol Microbiol; 2008 Dec; 70(5):1062-75. PubMed ID: 18990185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.
    Boehringer D; O'Farrell HC; Rife JP; Ban N
    J Biol Chem; 2012 Mar; 287(13):10453-10459. PubMed ID: 22308031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of KsgA, a 16S rRNA methyltransferase, causes vigorous emergence of mutants with high-level kasugamycin resistance.
    Ochi K; Kim JY; Tanaka Y; Wang G; Masuda K; Nanamiya H; Okamoto S; Tokuyama S; Adachi Y; Kawamura F
    Antimicrob Agents Chemother; 2009 Jan; 53(1):193-201. PubMed ID: 19001112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis.
    O'Farrell HC; Rife JP
    BMC Microbiol; 2012 Oct; 12():244. PubMed ID: 23095113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impairing methylations at ribosome RNA, a point mutation-dependent strategy for aminoglycoside resistance: the rsmG case.
    Benítez-Páez A; Cárdenas-Brito S; Corredor M; Villarroya M; Armengod ME
    Biomedica; 2014 Apr; 34 Suppl 1():41-9. PubMed ID: 24968035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function.
    Demirci H; Murphy F; Belardinelli R; Kelley AC; Ramakrishnan V; Gregory ST; Dahlberg AE; Jogl G
    RNA; 2010 Dec; 16(12):2319-24. PubMed ID: 20962038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a Plasmodium falciparum rRNA methyltransferase.
    Gupta K; Gupta A; Habib S
    Mol Biochem Parasitol; 2018 Jul; 223():13-18. PubMed ID: 29909066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome biogenesis; the KsgA protein throws a methyl-mediated switch in ribosome assembly.
    Mangat CS; Brown ED
    Mol Microbiol; 2008 Dec; 70(5):1051-3. PubMed ID: 19006815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA.
    Kimura S; Suzuki T
    Nucleic Acids Res; 2010 Mar; 38(4):1341-52. PubMed ID: 19965768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimethyl adenosine transferase (KsgA) contributes to cell-envelope fitness in Salmonella Enteritidis.
    Chiok KL; Paul NC; Adekanmbi EO; Srivastava SK; Shah DH
    Microbiol Res; 2018 Nov; 216():108-119. PubMed ID: 30269850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of 16S rRNA methyltransferase (KsgA) function in Escherichia coli.
    Inoue K; Basu S; Inouye M
    J Bacteriol; 2007 Dec; 189(23):8510-8. PubMed ID: 17890303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of U1498 methylation in 16S rRNA by RsmE methyltransferase associates its role with aminoglycoside resistance in mycobacteria.
    Bijpuria S; Sharma R; Taneja B
    J Glob Antimicrob Resist; 2020 Dec; 23():359-369. PubMed ID: 33186785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Insights into the Methylation of C1402 in 16S rRNA by Methyltransferase RsmI.
    Zhao M; Zhang H; Liu G; Wang L; Wang J; Gao Z; Dong Y; Zhang L; Gong Y
    PLoS One; 2016; 11(10):e0163816. PubMed ID: 27711192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on Aminoglycoside Susceptibility Identify a Novel Function of KsgA To Secure Translational Fidelity during Antibiotic Stress.
    Zou J; Zhang W; Zhang H; Zhang XD; Peng B; Zheng J
    Antimicrob Agents Chemother; 2018 Oct; 62(10):. PubMed ID: 30082289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MntC-Dependent Manganese Transport Is Essential for
    Handke LD; Gribenko AV; Timofeyeva Y; Scully IL; Anderson AS
    mSphere; 2018 Jul; 3(4):. PubMed ID: 30021878
    [No Abstract]   [Full Text] [Related]  

  • 18. The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit.
    Desai PM; Rife JP
    Arch Biochem Biophys; 2006 May; 449(1-2):57-63. PubMed ID: 16620761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness.
    Binet R; Maurelli AT
    BMC Microbiol; 2009 Dec; 9():279. PubMed ID: 20043826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants.
    Nishimura K; Johansen SK; Inaoka T; Hosaka T; Tokuyama S; Tahara Y; Okamoto S; Kawamura F; Douthwaite S; Ochi K
    J Bacteriol; 2007 Aug; 189(16):6068-73. PubMed ID: 17573471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.