These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 26546676)
41. The structure of bovine mitochondrial F1-ATPase: an example of rotary catalysis. Leslie AG; Abrahams JP; Braig K; Lutter R; Menz RI; Orriss GL; van Raaij MJ; Walker JE Biochem Soc Trans; 1999 Feb; 27(2):37-42. PubMed ID: 10093703 [TBL] [Abstract][Full Text] [Related]
42. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase. Gaballo A; Zanotti F; Papa S Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007 [TBL] [Abstract][Full Text] [Related]
43. The affinity purification and characterization of ATP synthase complexes from mitochondria. Runswick MJ; Bason JV; Montgomery MG; Robinson GC; Fearnley IM; Walker JE Open Biol; 2013 Feb; 3(2):120160. PubMed ID: 23407638 [TBL] [Abstract][Full Text] [Related]
44. The structure of the central stalk in bovine F(1)-ATPase at 2.4 A resolution. Gibbons C; Montgomery MG; Leslie AG; Walker JE Nat Struct Biol; 2000 Nov; 7(11):1055-61. PubMed ID: 11062563 [TBL] [Abstract][Full Text] [Related]
45. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Gledhill JR; Montgomery MG; Leslie AG; Walker JE Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13632-7. PubMed ID: 17698806 [TBL] [Abstract][Full Text] [Related]
46. Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases. Vignais PV; Satre M Mol Cell Biochem; 1984; 60(1):33-71. PubMed ID: 6231469 [TBL] [Abstract][Full Text] [Related]
47. F Frasch WD; Bukhari ZA; Yanagisawa S Front Microbiol; 2022; 13():965620. PubMed ID: 36081786 [TBL] [Abstract][Full Text] [Related]
48. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides. Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287 [TBL] [Abstract][Full Text] [Related]
49. Rotation of artificial rotor axles in rotary molecular motors. Baba M; Iwamoto K; Iino R; Ueno H; Hara M; Nakanishi A; Kishikawa JI; Noji H; Yokoyama K Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11214-11219. PubMed ID: 27647891 [TBL] [Abstract][Full Text] [Related]
50. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop. Buchert F; Konno H; Hisabori T Biochim Biophys Acta; 2015; 1847(4-5):441-450. PubMed ID: 25660164 [TBL] [Abstract][Full Text] [Related]
51. The regulator of the F1 motor: inhibition of rotation of cyanobacterial F1-ATPase by the epsilon subunit. Konno H; Murakami-Fuse T; Fujii F; Koyama F; Ueoka-Nakanishi H; Pack CG; Kinjo M; Hisabori T EMBO J; 2006 Oct; 25(19):4596-604. PubMed ID: 16977308 [TBL] [Abstract][Full Text] [Related]
52. X-ray structure of the dimeric cytochrome bc(1) complex from the soil bacterium Paracoccus denitrificans at 2.7-Å resolution. Kleinschroth T; Castellani M; Trinh CH; Morgner N; Brutschy B; Ludwig B; Hunte C Biochim Biophys Acta; 2011 Dec; 1807(12):1606-15. PubMed ID: 21996020 [TBL] [Abstract][Full Text] [Related]
53. ATPase/synthase activity of Paracoccus denitrificans Fo·F1 as related to the respiratory control phenomenon. Zharova TV; Vinogradov AD Biochim Biophys Acta; 2014 Aug; 1837(8):1322-9. PubMed ID: 24732246 [TBL] [Abstract][Full Text] [Related]
54. [Irregular activity oscillations of rotary molecular motor. A simple kinetic model of F1-ATPase]. Gol'dshteĭn BN; Aksirov AM; Zakrzhevskaia DT Mol Biol (Mosk); 2012; 46(5):792-8. PubMed ID: 23156679 [TBL] [Abstract][Full Text] [Related]
55. Interaction of Venturicidin and F Zharova TV; Kozlovsky VS; Grivennikova VG Biochemistry (Mosc); 2022 Aug; 87(8):742-751. PubMed ID: 36171655 [TBL] [Abstract][Full Text] [Related]
56. Hydrogen bonds between the alpha and beta subunits of the F1-ATPase allow communication between the catalytic site and the interface of the beta catch loop and the gamma subunit. Boltz KW; Frasch WD Biochemistry; 2006 Sep; 45(37):11190-9. PubMed ID: 16964980 [TBL] [Abstract][Full Text] [Related]
57. ATP synthase from bovine heart mitochondria: identification by proteolysis of sites in F0 exposed by removal of F1 and the oligomycin-sensitivity conferral protein. Collinson IR; Fearnley IM; Skehel JM; Runswick MJ; Walker JE Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):639-45. PubMed ID: 7980427 [TBL] [Abstract][Full Text] [Related]
58. Structure of the γ-ε complex of cyanobacterial F Murakami S; Kondo K; Katayama S; Hara S; Sunamura EI; Yamashita E; Groth G; Hisabori T Biochem J; 2018 Sep; 475(18):2925-2939. PubMed ID: 30054433 [TBL] [Abstract][Full Text] [Related]
59. Fo membrane domain of ATP synthase from bovine heart mitochondria: purification, subunit composition, and reconstitution with F1-ATPase. Collinson IR; Runswick MJ; Buchanan SK; Fearnley IM; Skehel JM; van Raaij MJ; Griffiths DE; Walker JE Biochemistry; 1994 Jun; 33(25):7971-8. PubMed ID: 8011660 [TBL] [Abstract][Full Text] [Related]
60. The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Shirakihara Y; Leslie AG; Abrahams JP; Walker JE; Ueda T; Sekimoto Y; Kambara M; Saika K; Kagawa Y; Yoshida M Structure; 1997 Jun; 5(6):825-36. PubMed ID: 9261073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]