BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26546698)

  • 1. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.
    Qifeng W; Xiulian R; Jingjing G; Yongxing C
    J Hazard Mater; 2016 Mar; 304():1-9. PubMed ID: 26546698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of the dilute acidic sulfate effluent as resources by coupling solvent extraction-oxidation-hydrolysis.
    Ren X; Wei Q; Chen Y; Guo J; Wei S; Wang X
    J Hazard Mater; 2015 Dec; 299():702-10. PubMed ID: 26282088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.
    Chen D; Zhao H; Hu G; Qi T; Yu H; Zhang G; Wang L; Wang W
    J Hazard Mater; 2015 Aug; 294():35-40. PubMed ID: 25840036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on solvent extraction of iron(III) as a step for conversion of a waste effluent to a value added product.
    Agrawal A; Kumari S; Sahu KK
    J Environ Manage; 2011 Dec; 92(12):3105-11. PubMed ID: 21862202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable Selective Recovery of Sulfuric Acid and Vanadium from Acidic Wastewater with Two-Step Solvent Extraction.
    Zhu X; Ma C; Li W
    ACS Omega; 2023 Aug; 8(30):27127-27138. PubMed ID: 37546607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of organic phase, fermentation media, and operating conditions on lactic Acid extraction.
    Hossain MM; Maisuria JL
    Biotechnol Prog; 2008; 24(3):757-65. PubMed ID: 18376873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of zinc(II) from HCl spent pickling solutions by solvent extraction.
    Regel M; Sastre AM; Szymanowski J
    Environ Sci Technol; 2001 Feb; 35(3):630-5. PubMed ID: 11351740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioleaching of indium from spent light-emitting diode monitors and selective recovery followed by solvent extraction.
    Khezerloo S; Nasirpour N; Pourhossein F; Mousavi SM
    J Environ Manage; 2023 Jun; 335():117520. PubMed ID: 36827804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient recovery of molybdenum from spent catalyst by an optimized process.
    Zhang M; Song H; Zheng C; Lin Z; Liu Y; Wu W; Gao X
    J Air Waste Manag Assoc; 2020 Oct; 70(10):971-979. PubMed ID: 32633619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of nitric acid from waste etching solution using solvent extraction.
    Shin CH; Kim JY; Kim JY; Kim HS; Lee HS; Mohapatra D; Ahn JW; Ahn JG; Bae W
    J Hazard Mater; 2009 Apr; 163(2-3):729-34. PubMed ID: 18755545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of nickel from spent NiO/Al2O3 catalyst through sulfuric acid leaching, precipitation and solvent extraction.
    Nazemi MK; Rashchi F
    Waste Manag Res; 2012 May; 30(5):492-7. PubMed ID: 21930525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO
    Wu Y; Zhou K; Zhang X; Peng C; Jiang Y; Chen W
    Waste Manag; 2022 May; 144():303-312. PubMed ID: 35427902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?
    Okkenhaug G; Breedveld GD; Kirkeng T; Lægreid M; Mæhlum T; Mulder J
    J Hazard Mater; 2013 Mar; 248-249():159-66. PubMed ID: 23465722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336.
    Nayl AA
    J Hazard Mater; 2010 Jan; 173(1-3):223-30. PubMed ID: 19783369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.
    Reddy BR; Raju B; Lee JY; Park HK
    J Hazard Mater; 2010 Aug; 180(1-3):253-8. PubMed ID: 20435411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts.
    Li G; Liu M; Rao M; Jiang T; Zhuang J; Zhang Y
    J Hazard Mater; 2014 Sep; 280():774-80. PubMed ID: 25240647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.
    Mansur MB; Rocha SD; Magalhães FS; Benedetto Jdos S
    J Hazard Mater; 2008 Feb; 150(3):669-78. PubMed ID: 17570579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A selective hydrometallurgical method for scandium recovery from a real red mud leachate: A comparative study.
    Salman AD; Juzsakova T; Jalhoom MG; Abdullah TA; Le PC; Viktor S; Domokos E; Nguyen XC; La DD; Nadda AK; Nguyen DD
    Environ Pollut; 2022 Sep; 308():119596. PubMed ID: 35716890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent Extraction with Cyanex 923 to Remove Arsenic(V) from Solutions.
    Alguacil FJ; Escudero E; Robla JI
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.