BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26546919)

  • 1. Genomic structure and promoter characterization of the CDPK kinase gene expressed during seed formation in Pharbitis nil.
    Pawełek A; Szmidt-Jaworska A; Świeżawska B; Jaworski K
    J Plant Physiol; 2015 Sep; 189():87-96. PubMed ID: 26546919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The calcium-dependent protein kinase (PnCDPK1) is involved in Pharbitis nil flowering.
    Jaworski K; Pawełek A; Kopcewicz J; Szmidt-Jaworska A
    J Plant Physiol; 2012 Nov; 169(16):1578-85. PubMed ID: 22840323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition.
    Frankowski K; Kesy J; Wojciechowski W; Kopcewicz J
    J Plant Physiol; 2009 Jan; 166(2):192-202. PubMed ID: 18541335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical evidence for a calcium-dependent protein kinase from Pharbitis nil and its involvement in photoperiodic flower induction.
    Jaworski K; Szmidt-Jaworska A; Tretyn A; Kopcewicz J
    Phytochemistry; 2003 Apr; 62(7):1047-55. PubMed ID: 12591257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant.
    Higuchi Y; Sage-Ono K; Sasaki R; Ohtsuki N; Hoshino A; Iida S; Kamada H; Ono M
    Plant Cell Physiol; 2011 Apr; 52(4):638-50. PubMed ID: 21382978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction in the critical dark length for flower induction during aging in the short-day plant Pharbitis nil var. Kidachi.
    Hasegawa H; Yamada M; Iwase Y; Wada KC; Takeno K
    Sex Plant Reprod; 2010 Dec; 23(4):291-300. PubMed ID: 20309586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions among LOX metabolites regulate temperature-mediated flower bud formation in morning glory (Pharbitis nil).
    Nam KH; Yoshihara T
    J Plant Physiol; 2012 Dec; 169(18):1815-20. PubMed ID: 22902207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil.
    Wilmowicz E; Kesy J; Kopcewicz J
    J Plant Physiol; 2008 Dec; 165(18):1917-28. PubMed ID: 18565620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium dependent protein kinase (CDPK) expression during fruit development in cultivated peanut (Arachis hypogaea) under Ca²⁺-sufficient and -deficient growth regimens.
    Jain M; Pathak BP; Harmon AC; Tillman BL; Gallo M
    J Plant Physiol; 2011 Dec; 168(18):2272-7. PubMed ID: 21862174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PnMADS1, encoding an StMADS11-clade protein, acts as a repressor of flowering in Pharbitis nil.
    Kikuchi R; Sage-Ono K; Kamada H; Handa H; Ono M
    Physiol Plant; 2008 Aug; 133(4):786-93. PubMed ID: 18433417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of light-to-dark transitions on phase setting in circadian expression among clock-controlled genes in Pharbitis nil.
    Hayama R; Mizoguchi T; Coupland G
    Plant Signal Behav; 2018; 13(6):e1473686. PubMed ID: 29944436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal association of Ca(2+)-dependent protein kinase with oil bodies during seed development in Santalum album L.: its biochemical characterization and significance.
    Anil VS; Harmon AC; Rao KS
    Plant Cell Physiol; 2003 Apr; 44(4):367-76. PubMed ID: 12721377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis.
    Wada KC; Mizuuchi K; Koshio A; Kaneko K; Mitsui T; Takeno K
    J Plant Physiol; 2014 Jul; 171(11):895-902. PubMed ID: 24913046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development.
    Zhang Y; Wang P; Xia H; Zhao C; Hou L; Li C; Gao C; Wang X; Zhao S
    BMC Genomics; 2016 Aug; 17(1):606. PubMed ID: 27514934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-induced flowering.
    Wada KC; Takeno K
    Plant Signal Behav; 2010 Aug; 5(8):944-7. PubMed ID: 20505356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of 4 TaGAST genes during spike development and seed germination and their response to exogenous phytohormones in common wheat.
    Kim YJ; Kim JY; Yoon JS; Kim DY; Hong MJ; Seo YW
    Mol Biol Rep; 2016 Dec; 43(12):1435-1449. PubMed ID: 27649990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil.
    Wada KC; Yamada M; Shiraya T; Takeno K
    J Plant Physiol; 2010 Apr; 167(6):447-52. PubMed ID: 19906461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene.
    Morello L; Bardini M; Cricrì M; Sala F; Breviario D
    Planta; 2006 Feb; 223(3):479-91. PubMed ID: 16200411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of light on soluble guanylyl cyclase activity in Pharbitis nil seedlings.
    Szmidt-Jaworska A; Jaworski K; Kopcewicz J
    J Photochem Photobiol B; 2008 Oct; 93(1):9-15. PubMed ID: 18674925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil.
    Szmidt-Jaworska A; Jaworski K; Kopcewicz J
    J Plant Physiol; 2008 May; 165(8):858-67. PubMed ID: 17913286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.