BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26547026)

  • 1. Kinetic analysis of the hydrolysis of methyl parathion using citrate-stabilized 10 nm gold nanoparticles.
    Nita R; Trammell SA; Ellis GA; Moore MH; Soto CM; Leary DH; Fontana J; Talebzadeh SF; Knight DA
    Chemosphere; 2016 Feb; 144():1916-9. PubMed ID: 26547026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.
    Liao X; Zhang C; Liu Y; Luo Y; Wu S; Yuan S; Zhu Z
    Chemosphere; 2016 May; 150():90-96. PubMed ID: 26891361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization.
    Park JW; Shumaker-Parry JS
    ACS Nano; 2015 Feb; 9(2):1665-82. PubMed ID: 25625548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent fabrication of methyl parathion hydrolase on gold nanoparticles modified carbon substrates for designing a methyl parathion biosensor.
    Liu G; Guo W; Yin Z
    Biosens Bioelectron; 2014 Mar; 53():440-6. PubMed ID: 24211455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions.
    Zhao L; Jiang D; Cai Y; Ji X; Xie R; Yang W
    Nanoscale; 2012 Aug; 4(16):5071-6. PubMed ID: 22776896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating the initial rate of hydrolysis of methyl parathion with laser excitation using monolayer protected 10 nm Au nanoparticles capped with a Cu(bpy) catalyst.
    Trammell SA; Nita R; Moore M; Zabetakis D; Chang E; Knight DA
    Chem Commun (Camb); 2012 Apr; 48(34):4121-3. PubMed ID: 22434011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles.
    Ye Y; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6442-8. PubMed ID: 22955571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.
    Umamaheswari C; Lakshmanan A; Nagarajan NS
    J Photochem Photobiol B; 2018 Jan; 178():33-39. PubMed ID: 29101871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly controlled synthesis of nanometric gold particles by citrate reduction using the short mixing, heating and quenching times achievable in a microfluidic device.
    Ftouni J; Penhoat M; Addad A; Payen E; Rolando C; Girardon JS
    Nanoscale; 2012 Aug; 4(15):4450-4. PubMed ID: 22722332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of citrate concentration during the seeded growth synthesis of gold nanoparticles.
    Volkert AA; Subramaniam V; Haes AJ
    Chem Commun (Camb); 2011 Jan; 47(1):478-80. PubMed ID: 20931116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles.
    Liu X; Huang H; Jin Q; Ji J
    Langmuir; 2011 May; 27(9):5242-51. PubMed ID: 21476529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LDI-MS assisted by chemical-free gold nanoparticles: enhanced sensitivity and reduced background in the low-mass region.
    Amendola V; Litti L; Meneghetti M
    Anal Chem; 2013 Dec; 85(24):11747-54. PubMed ID: 24274079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface science of DNA adsorption onto citrate-capped gold nanoparticles.
    Zhang X; Servos MR; Liu J
    Langmuir; 2012 Feb; 28(8):3896-902. PubMed ID: 22272583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold Nanoparticle-Stabilized, Tyrosine-Rich Peptide Self-Assemblies and Their Catalytic Activities in the Reduction of 4-Nitrophenol.
    Lee N; Lee DW; Lee SM
    Biomacromolecules; 2018 Dec; 19(12):4534-4541. PubMed ID: 30475587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties.
    Chen M; Kang H; Gong Y; Guo J; Zhang H; Liu R
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21717-26. PubMed ID: 26357993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles.
    Kumar N; Seth R; Kumar H
    Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From the Cover: An Investigation of the Genotoxicity and Interference of Gold Nanoparticles in Commonly Used In Vitro Mutagenicity and Genotoxicity Assays.
    George JM; Magogotya M; Vetten MA; Buys AV; Gulumian M
    Toxicol Sci; 2017 Mar; 156(1):149-166. PubMed ID: 28108664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts.
    MeenaKumari M; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():632-8. PubMed ID: 25128675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.