These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 26547111)
1. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin. Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111 [TBL] [Abstract][Full Text] [Related]
2. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Ito S; Wakamatsu K Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439519 [No Abstract] [Full Text] [Related]
3. 4-(4-Hydroxyphenyl)-2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by UVB exposure through generation of oxidative stress. Goto N; Tsujimoto M; Nagai H; Masaki T; Ito S; Wakamatsu K; Nishigori C Exp Dermatol; 2018 Jul; 27(7):754-762. PubMed ID: 29630780 [TBL] [Abstract][Full Text] [Related]
4. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809 [TBL] [Abstract][Full Text] [Related]
5. Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma. Tokura Y; Fujiyama T; Ikeya S; Tatsuno K; Aoshima M; Kasuya A; Ito T J Dermatol Sci; 2015 Mar; 77(3):146-9. PubMed ID: 25726326 [TBL] [Abstract][Full Text] [Related]
6. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma. Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897 [TBL] [Abstract][Full Text] [Related]
7. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. Kasamatsu S; Hachiya A; Nakamura S; Yasuda Y; Fujimori T; Takano K; Moriwaki S; Hase T; Suzuki T; Matsunaga K J Dermatol Sci; 2014 Oct; 76(1):16-24. PubMed ID: 25082450 [TBL] [Abstract][Full Text] [Related]
8. Open-label pilot study to evaluate the effectiveness of topical bimatoprost on rhododendrol-induced refractory leukoderma. Fukaya S; Kamata M; Kasanuki T; Yokobori M; Takeoka S; Hayashi K; Tanaka T; Fukuyasu A; Ishikawa T; Ohnishi T; Iimuro S; Tada Y; Watanabe S J Dermatol; 2018 Nov; 45(11):1283-1288. PubMed ID: 30156328 [TBL] [Abstract][Full Text] [Related]
9. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP. Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941 [TBL] [Abstract][Full Text] [Related]
11. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Ito S; Ojika M; Yamashita T; Wakamatsu K Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082 [TBL] [Abstract][Full Text] [Related]
12. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45. Kim M; Baek HS; Lee M; Park H; Shin SS; Choi DW; Lim KM Toxicol In Vitro; 2016 Apr; 32():339-46. PubMed ID: 26867644 [TBL] [Abstract][Full Text] [Related]
13. Rhododenol Activates Melanocytes and Induces Morphological Alteration at Sub-Cytotoxic Levels. Kim M; Lee CS; Lim KM Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31726751 [TBL] [Abstract][Full Text] [Related]
14. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss]. Nishimaki-Mogami T Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2015; (133):13-20. PubMed ID: 26821466 [TBL] [Abstract][Full Text] [Related]
15. Guide for medical professionals (i.e., dermatologists) for the management of Rhododenol-induced leukoderma. Nishigori C; Aoyama Y; Ito A; Suzuki K; Suzuki T; Tanemura A; Ito M; Katayama I; Oiso N; Kagohashi Y; Sugiura S; Fukai K; Funasaka Y; Yamashita T; Matsunaga K J Dermatol; 2015 Feb; 42(2):113-28. PubMed ID: 25622988 [TBL] [Abstract][Full Text] [Related]
16. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins. Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930 [TBL] [Abstract][Full Text] [Related]
18. Progression from in vivo validation to in vitro screening in hazard assessment for leukoderma-inducible chemicals. Tazaki A; Nishadhi DASM; Li A; Zhang L; Maw TH; Kondo-Ida L; Yanagisawa K; Kato M Environ Pollut; 2024 Sep; 356():124508. PubMed ID: 39089942 [TBL] [Abstract][Full Text] [Related]
19. Leukoderma induced by rhododendrol is different from leukoderma of vitiligo in pathogenesis: A novel comparative morphological study. Tsutsumi R; Sugita K; Abe Y; Hozumi Y; Suzuki T; Yamada N; Yoshida Y; Yamamoto O J Cutan Pathol; 2019 Feb; 46(2):123-129. PubMed ID: 30456919 [TBL] [Abstract][Full Text] [Related]
20. An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients. Tanemura A; Yang L; Yang F; Nagata Y; Wataya-Kaneda M; Fukai K; Tsuruta D; Ohe R; Yamakawa M; Suzuki T; Katayama I J Dermatol Sci; 2015 Mar; 77(3):185-8. PubMed ID: 25676426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]