These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26547500)

  • 1. Prediction of conformationally dependent atomic multipole moments in carbohydrates.
    Cardamone S; Popelier PL
    J Comput Chem; 2015 Dec; 36(32):2361-73. PubMed ID: 26547500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Chemical Calculations with Machine Learning for Multipolar Electrostatics Prediction in RNA: An Application to Pentose.
    Yuan Y; Yan H; Cui Z; Liu Z; Su W; Zhang R
    J Chem Inf Model; 2022 Sep; 62(17):4122-4133. PubMed ID: 36036609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multipolar electrostatics based on the Kriging machine learning method: an application to serine.
    Yuan Y; Mills MJ; Popelier PL
    J Mol Model; 2014 Apr; 20(4):2172. PubMed ID: 24633774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments.
    Darley MG; Handley CM; Popelier PL
    J Chem Theory Comput; 2008 Sep; 4(9):1435-48. PubMed ID: 26621430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy and tractability of a kriging model of intramolecular polarizable multipolar electrostatics and its application to histidine.
    Kandathil SM; Fletcher TL; Yuan Y; Knowles J; Popelier PL
    J Comput Chem; 2013 Aug; 34(21):1850-61. PubMed ID: 23720381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified approach to multipolar polarisation and charge transfer for ions: microhydrated Na+.
    Mills MJ; Hawe GI; Handley CM; Popelier PL
    Phys Chem Chem Phys; 2013 Nov; 15(41):18249-61. PubMed ID: 24064799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning.
    Fletcher TL; Popelier PL
    J Chem Theory Comput; 2016 Jun; 12(6):2742-51. PubMed ID: 27224739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian Process Regression Models for Predicting Atomic Energies and Multipole Moments.
    Burn MJ; Popelier PLA
    J Chem Theory Comput; 2023 Feb; 19(4):1370-1380. PubMed ID: 36757024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic Forces: Formulas for the First Derivatives of a Polarizable, Anisotropic Electrostatic Potential Energy Function Based on Machine Learning.
    Mills MJ; Popelier PL
    J Chem Theory Comput; 2014 Sep; 10(9):3840-56. PubMed ID: 26588529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer.
    Davie SJ; Di Pasquale N; Popelier PL
    J Comput Chem; 2016 Oct; 37(27):2409-22. PubMed ID: 27535711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realistic sampling of amino acid geometries for a multipolar polarizable force field.
    Hughes TJ; Cardamone S; Popelier PL
    J Comput Chem; 2015 Sep; 36(24):1844-57. PubMed ID: 26235784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general RNA force field: comprehensive analysis of energy minima of molecular fragments of RNA.
    Yuan Y; Mills MJL; Zhang Z; Ma Y; Zhao C; Su W
    J Mol Model; 2021 Apr; 27(5):137. PubMed ID: 33903935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.
    Hughes TJ; Kandathil SM; Popelier PL
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt A():32-41. PubMed ID: 24274986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long range behavior of high-rank topological multipole moments.
    Rafat M; Popelier PL
    J Comput Chem; 2007 Mar; 28(4):832-8. PubMed ID: 17226840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.
    Yuan Y; Mills MJ; Popelier PL
    J Comput Chem; 2014 Feb; 35(5):343-59. PubMed ID: 24449043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic multipoles: electrostatic potential fit, local reference axis systems, and conformational dependence.
    Kramer C; Gedeck P; Meuwly M
    J Comput Chem; 2012 Jul; 33(20):1673-88. PubMed ID: 22544510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a Gaussian Process Regression Model of Formamide for Use in Molecular Simulations.
    Brown ML; Skelton JM; Popelier PLA
    J Phys Chem A; 2023 Feb; 127(7):1702-1714. PubMed ID: 36756842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transferability of atomic multipoles in amino acids and peptides for various density partitions.
    Woińska M; Dominiak PM
    J Phys Chem A; 2013 Feb; 117(7):1535-47. PubMed ID: 21942712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferability of quantum topological atoms in terms of electrostatic interaction energy.
    Rafat M; Shaik M; Popelier PL
    J Phys Chem A; 2006 Dec; 110(50):13578-83. PubMed ID: 17165885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.