BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 26548301)

  • 1. The end of gating? An introduction to automated analysis of high dimensional cytometry data.
    Mair F; Hartmann FJ; Mrdjen D; Tosevski V; Krieg C; Becher B
    Eur J Immunol; 2016 Jan; 46(1):34-43. PubMed ID: 26548301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets.
    Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T
    Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithmic Tools for Mining High-Dimensional Cytometry Data.
    Chester C; Maecker HT
    J Immunol; 2015 Aug; 195(3):773-9. PubMed ID: 26188071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meeting the Challenges of High-Dimensional Single-Cell Data Analysis in Immunology.
    Palit S; Heuser C; de Almeida GP; Theis FJ; Zielinski CE
    Front Immunol; 2019; 10():1515. PubMed ID: 31354705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ExCYT: A Graphical User Interface for Streamlining Analysis of High-Dimensional Cytometry Data.
    Sidhom JW; Theodros D; Murter B; Zarif JC; Ganguly S; Pardoll DM; Baras A
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatically generate two-dimensional gating hierarchy from clustered cytometry data.
    Yang X; Qiu P
    Cytometry A; 2018 Oct; 93(10):1039-1050. PubMed ID: 30176185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput automated analysis of big flow cytometry data.
    Rahim A; Meskas J; Drissler S; Yue A; Lorenc A; Laing A; Saran N; White J; Abeler-Dörner L; Hayday A; Brinkman RR
    Methods; 2018 Feb; 134-135():164-176. PubMed ID: 29287915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Beginner's Guide to Analyzing and Visualizing Mass Cytometry Data.
    Kimball AK; Oko LM; Bullock BL; Nemenoff RA; van Dyk LF; Clambey ET
    J Immunol; 2018 Jan; 200(1):3-22. PubMed ID: 29255085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward deterministic and semiautomated SPADE analysis.
    Qiu P
    Cytometry A; 2017 Mar; 91(3):281-289. PubMed ID: 28234411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Analysis of High-Dimensional Mass Cytometry Data from Clinical Tissue Samples.
    Norton S; Kemp R
    Methods Mol Biol; 2019; 1989():295-307. PubMed ID: 31077113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational flow cytometry: helping to make sense of high-dimensional immunology data.
    Saeys Y; Van Gassen S; Lambrecht BN
    Nat Rev Immunol; 2016 Jul; 16(7):449-62. PubMed ID: 27320317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model.
    Wong L; Hill BL; Hunsberger BC; Bagwell CB; Curtis AD; Davis BH
    Cytometry B Clin Cytom; 2015; 88(4):227-35. PubMed ID: 25529112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of functionally primitive and immunophenotypically distinct subpopulations in secondary acute myeloid leukemia by mass cytometry.
    Bandyopadhyay S; Fowles JS; Yu L; Fisher DAC; Oh ST
    Cytometry B Clin Cytom; 2019 Jan; 96(1):46-56. PubMed ID: 30426661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Comparison of Conventional and t-SNE-guided Gating Analyses.
    Toghi Eshghi S; Au-Yeung A; Takahashi C; Bolen CR; Nyachienga MN; Lear SP; Green C; Mathews WR; O'Gorman WE
    Front Immunol; 2019; 10():1194. PubMed ID: 31231371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry.
    Brummelman J; Haftmann C; Núñez NG; Alvisi G; Mazza EMC; Becher B; Lugli E
    Nat Protoc; 2019 Jul; 14(7):1946-1969. PubMed ID: 31160786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometry data analysis: Recent tools and algorithms.
    Montante S; Brinkman RR
    Int J Lab Hematol; 2019 May; 41 Suppl 1():56-62. PubMed ID: 31069980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis.
    Finak G; Frelinger J; Jiang W; Newell EW; Ramey J; Davis MM; Kalams SA; De Rosa SC; Gottardo R
    PLoS Comput Biol; 2014 Aug; 10(8):e1003806. PubMed ID: 25167361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of High-Dimensional Phenotype Data Generated by Mass Cytometry or High-Dimensional Flow Cytometry.
    Cirovic B; Katzmarski N; Schlitzer A
    Methods Mol Biol; 2019; 1989():281-294. PubMed ID: 31077112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.