These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26548334)

  • 1. Sensitivity of human embryonic stem cells to different conditions during cryopreservation.
    Xu Y; Zhang L; Xu J; Wei Y; Xu X
    Cryobiology; 2015 Dec; 71(3):486-92. PubMed ID: 26548334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement.
    Orellana MD; De Santis GC; Abraham KJ; Fontes AM; Magalhães DA; Oliveira Vde C; Costa Ede B; Palma PV; Covas DT
    Cryobiology; 2015 Aug; 71(1):151-60. PubMed ID: 25641609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase A inhibitor, H89, significantly enhances survival rate of dissociated human embryonic stem cells following cryopreservation.
    Zhang L; Xu Y; Xu J; Wei Y; Xu X
    Cell Prolif; 2016 Oct; 49(5):589-98. PubMed ID: 27484641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow Cooling and Controlled Ice Nucleation Enabling the Cryopreservation of Human T Lymphocytes with Low-Concentration Extracellular Trehalose.
    Huang Z; Liu W; Ma T; Zhao H; He X; Liu B
    Biopreserv Biobank; 2023 Aug; 21(4):417-426. PubMed ID: 36001824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryopreservation of human T lymphocytes under fast cooling with controlled ice nucleation in cryoprotective solutions of low toxicity.
    Huang Z; Liu W; Liu B; He X; Guo H; Xue S; Yan X; Jaganathan GK
    Cryobiology; 2021 Dec; 103():92-100. PubMed ID: 34508713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T).
    Xu Y; Zhao G; Zhou X; Ding W; Shu Z; Gao D
    Cryobiology; 2014 Apr; 68(2):294-302. PubMed ID: 24582893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of optimal techniques for cryopreservation of human platelets. I. Platelet activation during cold storage (at 22 and 8 degrees C) and cryopreservation.
    Gao DY; Neff K; Xiao HY; Matsubayashi H; Cui XD; Bonderman P; Bonderman D; Harvey K; McIntyre JA; Critser J; Miraglia CC; Reid T
    Cryobiology; 1999 May; 38(3):225-35. PubMed ID: 10328912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane permeability of the human pluripotent stem cells to Me₂SO, glycerol and 1,2-propanediol.
    Xu Y; Zhang L; Xu J; Wei Y; Xu X
    Arch Biochem Biophys; 2014 May; 550-551():67-76. PubMed ID: 24780243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells.
    Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B
    Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor.
    Martin-Ibañez R; Unger C; Strömberg A; Baker D; Canals JM; Hovatta O
    Hum Reprod; 2008 Dec; 23(12):2744-54. PubMed ID: 18716037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism.
    Solocinski J; Osgood Q; Wang M; Connolly A; Menze MA; Chakraborty N
    Cryobiology; 2017 Apr; 75():134-143. PubMed ID: 28063960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryobiological parameters of multipotent stromal cells obtained from different sources.
    Lauterboeck L; Wolkers WF; Glasmacher B
    Cryobiology; 2017 Feb; 74():93-102. PubMed ID: 27916562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryopreservation by slow cooling of rat neuronal cells.
    Robert MC; Juan de Paz L; Graf DA; Gazzin S; Tiribelli C; Bottai H; Rodriguez JV
    Cryobiology; 2016 Jun; 72(3):191-7. PubMed ID: 27164058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient, economical slow-freezing method for large-scale human embryonic stem cell banking.
    T'Joen V; De Grande L; Declercq H; Cornelissen M
    Stem Cells Dev; 2012 Mar; 21(5):721-8. PubMed ID: 21635216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stallion Sperm Cryopreservation Using Various Permeating Agents: Interplay Between Concentration and Cooling Rate.
    Oldenhof H; Bigalk J; Hettel C; de Oliveira Barros L; Sydykov B; Bajcsy ÁC; Sieme H; Wolkers WF
    Biopreserv Biobank; 2017 Oct; 15(5):422-431. PubMed ID: 28805449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance of human embryonic stem cell derived islet progenitor cells to vitrification-relevant solutions.
    Lahmy R; Bolyukh VF; Castilla SM; Laurent LC; Katkov II; Itkin-Ansari P
    Cryobiology; 2015 Jun; 70(3):283-6. PubMed ID: 25817378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyampholytes as cryoprotective agents for mammalian cell cryopreservation.
    Matsumura K; Bae JY; Hyon SH
    Cell Transplant; 2010; 19(6):691-9. PubMed ID: 20525437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of three methods for cryopreservation of human embryonic stem cells.
    Li Y; Tan JC; Li LS
    Fertil Steril; 2010 Feb; 93(3):999-1005. PubMed ID: 19108825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryoprotective agent toxicity interactions in human articular chondrocytes.
    Almansoori KA; Prasad V; Forbes JF; Law GK; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2012 Jun; 64(3):185-91. PubMed ID: 22274740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.