These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26548372)

  • 1. Atomistic Free Energy Model for Nucleic Acids: Simulations of Single-Stranded DNA and the Entropy Landscape of RNA Stem-Loop Structures.
    Mak CH
    J Phys Chem B; 2015 Nov; 119(47):14840-56. PubMed ID: 26548372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Model for Solvent-Induced Base Stacking Interactions in Solvent-Free DNA Simulations.
    Mak CH
    J Phys Chem B; 2019 Mar; 123(9):1939-1949. PubMed ID: 30727734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: implications for DNA hybridization.
    Einert TR; Orland H; Netz RR
    Eur Phys J E Soft Matter; 2011 Jun; 34(6):55. PubMed ID: 21626368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semiflexible polymer model applied to loop formation in DNA hairpins.
    Kuznetsov SV; Shen Y; Benight AS; Ansari A
    Biophys J; 2001 Nov; 81(5):2864-75. PubMed ID: 11606297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete state model and accurate estimation of loop entropy of RNA secondary structures.
    Zhang J; Lin M; Chen R; Wang W; Liang J
    J Chem Phys; 2008 Mar; 128(12):125107. PubMed ID: 18376982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum-free-energy distribution of RNA secondary structures: Entropic and thermodynamic properties of rare events.
    Wolfsheimer S; Hartmann AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021902. PubMed ID: 20866832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical predictions of DNA hairpin loop conformations: correlations with thermodynamic and spectroscopic data.
    Erie DA; Suri AK; Breslauer KJ; Jones RA; Olson WK
    Biochemistry; 1993 Jan; 32(2):436-54. PubMed ID: 8422353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.
    Nina M; Fonné-Pfister R; Beaudegnies R; Chekatt H; Jung PM; Murphy-Kessabi F; De Mesmaeker A; Wendeborn S
    J Am Chem Soc; 2005 Apr; 127(16):6027-38. PubMed ID: 15839703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational entropy of the RNA phosphate backbone and its contribution to the folding free energy.
    Mak CH; Matossian T; Chung WY
    Biophys J; 2014 Apr; 106(7):1497-507. PubMed ID: 24703311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleic acid folding simulations using a physics-based atomistic free energy model.
    Mak CH
    J Chem Phys; 2022 May; 156(17):174114. PubMed ID: 35525642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational analysis of DNA-trinucleotide-hairpin-loop structures using a continuum solvent model.
    Zacharias M
    Biophys J; 2001 May; 80(5):2350-63. PubMed ID: 11325735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt dependence of nucleic acid hairpin stability.
    Tan ZJ; Chen SJ
    Biophys J; 2008 Jul; 95(2):738-52. PubMed ID: 18424500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and dynamics of DNA hybridization.
    Yin Y; Zhao XS
    Acc Chem Res; 2011 Nov; 44(11):1172-81. PubMed ID: 21718008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing single-stranded nucleic acids in solution.
    Plumridge A; Meisburger SP; Pollack L
    Nucleic Acids Res; 2017 May; 45(9):e66. PubMed ID: 28034955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chain persistency in single-stranded DNA.
    Sain A; Ha BY; Tsao HK; Chen JZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061913. PubMed ID: 15244623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological Constraints and Their Conformational Entropic Penalties on RNA Folds.
    Mak CH; Phan ENH
    Biophys J; 2018 May; 114(9):2059-2071. PubMed ID: 29742400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics of potential rRNA binders: single-stranded nucleic acids and some analogues.
    Panecka J; Mura C; Trylska J
    J Phys Chem B; 2011 Jan; 115(3):532-46. PubMed ID: 21192664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.
    Poltev V; Anisimov VM; Danilov VI; Garcia D; Sanchez C; Deriabina A; Gonzalez E; Rivas F; Polteva N
    Biopolymers; 2014 Jun; 101(6):640-50. PubMed ID: 24170251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual Conformational Entropies on the Sugar-Phosphate Backbone of Nucleic Acids: An Analysis of the Nucleosome Core DNA and the Ribosome.
    Mak CH; Sani LL; Villa AN
    J Phys Chem B; 2015 Aug; 119(33):10434-47. PubMed ID: 26215697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.