These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2654847)
21. Comparison of volume control and pressure control ventilation: is flow waveform the difference? Davis K; Branson RD; Campbell RS; Porembka DT J Trauma; 1996 Nov; 41(5):808-14. PubMed ID: 8913208 [TBL] [Abstract][Full Text] [Related]
22. Effects of partial liquid ventilation with FC-77 on acute lung injury in newborn piglets. Jeng MJ; Kou YR; Sheu CC; Hwang B Pediatr Pulmonol; 2002 Jan; 33(1):12-21. PubMed ID: 11747255 [TBL] [Abstract][Full Text] [Related]
23. Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Pellicano A; Tingay DG; Mills JF; Fasulakis S; Morley CJ; Dargaville PA Intensive Care Med; 2009 Nov; 35(11):1990-8. PubMed ID: 19756507 [TBL] [Abstract][Full Text] [Related]
24. The effect of mode, inspiratory time, and positive end-expiratory pressure on partial liquid ventilation. Fujino Y; Kirmse M; Hess D; Kacmarek RM Am J Respir Crit Care Med; 1999 Apr; 159(4 Pt 1):1087-95. PubMed ID: 10194150 [TBL] [Abstract][Full Text] [Related]
25. Intratracheal pulmonary ventilation provides effective ventilation in a near-drowning model. Burkhead SR; Lally KP; Bristow F; Sándor GJ; Xue H J Pediatr Surg; 1996 Mar; 31(3):337-41. PubMed ID: 8708899 [TBL] [Abstract][Full Text] [Related]
26. Extreme hypoventilation reduces ventilator-induced lung injury during ventilation with low positive end-expiratory pressure in saline-lavaged rabbits. Hickling KG; Wright T; Laubscher K; Town IG; Tie A; Graham P; Monteath J; A'Court G Crit Care Med; 1998 Oct; 26(10):1690-7. PubMed ID: 9781727 [TBL] [Abstract][Full Text] [Related]
27. Multicenter controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome. Keszler M; Modanlou HD; Brudno DS; Clark FI; Cohen RS; Ryan RM; Kaneta MK; Davis JM Pediatrics; 1997 Oct; 100(4):593-9. PubMed ID: 9310511 [TBL] [Abstract][Full Text] [Related]
28. Hemodynamic and ventilatory effects of high-frequency jet and conventional ventilation in piglets with lung lavage. Suguihara C; Bancalari E; Goldberg RN; Barrios P; Hehre D Biol Neonate; 1987; 51(5):241-8. PubMed ID: 3647799 [TBL] [Abstract][Full Text] [Related]
29. Pressure-controlled ventilation versus controlled mechanical ventilation with decelerating inspiratory flow. Muñoz J; Guerrero JE; Escalante JL; Palomino R; De La Calle B Crit Care Med; 1993 Aug; 21(8):1143-8. PubMed ID: 8339578 [TBL] [Abstract][Full Text] [Related]
30. Compliance of the respiratory system as a predictor for successful extubation in very-low-birth-weight infants recovering from respiratory distress syndrome. Smith J; Pieper CH; Maree D; Gie RP S Afr Med J; 1999 Oct; 89(10):1097-102. PubMed ID: 10582068 [TBL] [Abstract][Full Text] [Related]
31. Reduced CO2-elimination during combined high-frequency ventilation compared to conventional pressure-controlled ventilation in surfactant-deficient piglets. Lichtwarck-Aschoff M; Zimmermann GJ; Erhardt W Acta Anaesthesiol Scand; 1998 Mar; 42(3):335-42. PubMed ID: 9542562 [TBL] [Abstract][Full Text] [Related]
32. Effect of baseline lung compliance on the subsequent response to positive end-expiratory pressure in ventilated piglets with normal lungs. Mundie TG; Easa D; Finn KC; Stevens EL; Hashiro G; Balaraman V Crit Care Med; 1994 Oct; 22(10):1631-8. PubMed ID: 7924376 [TBL] [Abstract][Full Text] [Related]
33. Cardiorespiratory effects of perfluorocarbon-associated gas exchange at reduced oxygen concentrations. Hernan LJ; Fuhrman BP; Papo MC; Steinhorn DM; Leach CL; Salman N; Paczan PR; Kahn B Crit Care Med; 1995 Mar; 23(3):553-9. PubMed ID: 7874909 [TBL] [Abstract][Full Text] [Related]
34. Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Mutch WA; Harms S; Lefevre GR; Graham MR; Girling LG; Kowalski SE Crit Care Med; 2000 Jul; 28(7):2457-64. PubMed ID: 10921579 [TBL] [Abstract][Full Text] [Related]
35. Gas exchange and lung mechanics during high frequency ventilation in the perflubron-treated lung. Wolf GK; Sheeran P; Heitz D; Thompson JE; Arnold JH Pediatr Crit Care Med; 2008 Nov; 9(6):641-6. PubMed ID: 18838935 [TBL] [Abstract][Full Text] [Related]
36. Variations in end-expiratory pressure during partial liquid ventilation: impact on gas exchange, lung compliance, and end-expiratory lung volume. Manaligod JM; Bendel-Stenzel EM; Meyers PA; Bing DR; Connett JE; Mammel MC Chest; 2000 Jan; 117(1):184-90. PubMed ID: 10631218 [TBL] [Abstract][Full Text] [Related]
37. At surfactant deficiency, application of "the open lung concept" prevents protein leakage and attenuates changes in lung mechanics. Hartog A; Vazquez de Anda GF; Gommers D; Kaisers U; Lachmann B Crit Care Med; 2000 May; 28(5):1450-4. PubMed ID: 10834694 [TBL] [Abstract][Full Text] [Related]
38. Partial liquid ventilation: a comparison using conventional and high-frequency techniques in an animal model of acute respiratory failure. Smith KM; Bing DR; Meyers PA; Connett JE; Boros SJ; Mammel MC Crit Care Med; 1997 Jul; 25(7):1179-86. PubMed ID: 9233745 [TBL] [Abstract][Full Text] [Related]
39. Effects of frequency and airway pressure on gas exchange during interrupted high-frequency, positive-pressure ventilation in ponies. Wilson DV; Suslak L; Soma LR Am J Vet Res; 1988 Aug; 49(8):1263-9. PubMed ID: 3052192 [TBL] [Abstract][Full Text] [Related]
40. Effect of high-frequency oscillation and percussion versus conventional ventilation in a piglet model of meconium aspiration. Renesme L; Elleau C; Nolent P; Fayon M; Marthan R; Dumas De La Roque E Pediatr Pulmonol; 2013 Mar; 48(3):257-64. PubMed ID: 22570113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]