BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26548512)

  • 1. Abnormal epigenetic regulation of the gene expression levels of Wnt2b and Wnt7b: Implications for neural tube defects.
    Bai B; Chen S; Zhang Q; Jiang Q; Li H
    Mol Med Rep; 2016 Jan; 13(1):99-106. PubMed ID: 26548512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different epigenetic alterations are associated with abnormal IGF2/Igf2 upregulation in neural tube defects.
    Bai B; Zhang Q; Liu X; Miao C; Shangguan S; Bao Y; Guo J; Wang L; Zhang T; Li H
    PLoS One; 2014; 9(11):e113308. PubMed ID: 25423083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the expression of tumor necrosis factor‑related genes by abnormal histone H3K27 acetylation: Implications for neural tube defects.
    Wan C; Liu X; Bai B; Cao H; Li H; Zhang Q
    Mol Med Rep; 2018 Jun; 17(6):8031-8038. PubMed ID: 29693124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects.
    Zhang Q; Xue P; Li H; Bao Y; Wu L; Chang S; Niu B; Yang F; Zhang T
    Neurobiol Dis; 2013 Jun; 54():404-13. PubMed ID: 23376398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects.
    Li H; Bai B; Zhang Q; Bao Y; Guo J; Chen S; Miao C; Liu X; Zhang T
    Gene; 2015 Dec; 573(2):254-60. PubMed ID: 26188161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects.
    Yu J; Wang L; Pei P; Li X; Wu J; Qiu Z; Zhang J; Ao R; Wang S; Zhang T; Xie J
    Epigenetics Chromatin; 2019 Dec; 12(1):76. PubMed ID: 31856916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methylation aberrations rather than polymorphisms of FZD3 gene increase the risk of spina bifida in a high-risk region for neural tube defects.
    Shangguan S; Wang L; Chang S; Lu X; Wang Z; Wu L; Wang J; Wang X; Guan Z; Bao Y; Zhao H; Zou J; Niu B; Zhang T
    Birth Defects Res A Clin Mol Teratol; 2015 Jan; 103(1):37-44. PubMed ID: 25131656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of histone acetylation markers in human fetal brains and increased H4K5ac expression in neural tube defects.
    Li D; Wan C; Bai B; Cao H; Liu C; Zhang Q
    Mol Genet Genomic Med; 2019 Dec; 7(12):e1002. PubMed ID: 31612645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage.
    Szutorisz H; Canzonetta C; Georgiou A; Chow CM; Tora L; Dillon N
    Mol Cell Biol; 2005 Mar; 25(5):1804-20. PubMed ID: 15713636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors.
    Wöhrle S; Wallmen B; Hecht A
    Mol Cell Biol; 2007 Dec; 27(23):8164-77. PubMed ID: 17923689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.
    Harris MJ; Juriloff DM
    Teratology; 1999 Nov; 60(5):292-305. PubMed ID: 10525207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural tube defects and epigenetics: role of histone post-translational histone modifications.
    V RP; Finnell RH; Ross ME; Alarcón P; Suazo J
    Epigenomics; 2024 Mar; 16(6):419-426. PubMed ID: 38410929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals.
    Katoh M; Katoh M
    Int J Oncol; 2009 May; 34(5):1411-5. PubMed ID: 19360354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma.
    Ueno K; Hirata H; Majid S; Chen Y; Zaman MS; Tabatabai ZL; Hinoda Y; Dahiya R
    Mol Carcinog; 2011 Jun; 50(6):449-57. PubMed ID: 21268126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emerging role of epigenetic mechanisms in the etiology of neural tube defects.
    Greene ND; Stanier P; Moore GE
    Epigenetics; 2011 Jul; 6(7):875-83. PubMed ID: 21613818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypermethylation of AKT2 gene is associated with neural-tube defects in fetus.
    Ma FF; Cao DD; Ouyang S; Tang R; Liu Z; Li Y; Wu J
    Placenta; 2016 Dec; 48():80-86. PubMed ID: 27871477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic modifications in valproic acid-induced teratogenesis.
    Tung EW; Winn LM
    Toxicol Appl Pharmacol; 2010 Nov; 248(3):201-9. PubMed ID: 20705080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypothesis: the female excess in cranial neural tube defects reflects an epigenetic drag of the inactivating X chromosome on the molecular mechanisms of neural fold elevation.
    Juriloff DM; Harris MJ
    Birth Defects Res A Clin Mol Teratol; 2012 Oct; 94(10):849-55. PubMed ID: 22753363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.