These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
855 related articles for article (PubMed ID: 26548531)
1. Identification of microRNAs and microRNA targets in Xenopus gastrulae: The role of miR-26 in the regulation of Smad1. Liu C; Lou CH; Shah V; Ritter R; Talley J; Soibam B; Benham A; Zhu H; Perez E; Shieh YE; Gunaratne PH; Sater AK Dev Biol; 2016 Jan; 409(1):26-38. PubMed ID: 26548531 [TBL] [Abstract][Full Text] [Related]
2. Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing. Popov IK; Kwon T; Crossman DK; Crowley MR; Wallingford JB; Chang C Dev Biol; 2017 Jun; 426(2):429-441. PubMed ID: 27209239 [TBL] [Abstract][Full Text] [Related]
3. MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm. Shah VV; Soibam B; Ritter RA; Benham A; Oomen J; Sater AK Dev Biol; 2017 Jun; 426(2):200-210. PubMed ID: 27623002 [TBL] [Abstract][Full Text] [Related]
4. Characterization of small RNAs in Xenopus tropicalis gastrulae. Faunes F; Almonacid LI; Melo F; Larrain J Genesis; 2012 Mar; 50(3):260-70. PubMed ID: 22253037 [TBL] [Abstract][Full Text] [Related]
5. HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development. Li L; Veksler-Lublinsky I; Zinovyeva A PLoS Genet; 2019 Oct; 15(10):e1008067. PubMed ID: 31584932 [TBL] [Abstract][Full Text] [Related]
6. Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements. Harding JL; Horswell S; Heliot C; Armisen J; Zimmerman LB; Luscombe NM; Miska EA; Hill CS Genome Res; 2014 Jan; 24(1):96-106. PubMed ID: 24065776 [TBL] [Abstract][Full Text] [Related]
7. miR-199 plays both positive and negative regulatory roles in Xenopus eye development. Ritter RA; Ulrich CH; Brzezinska BN; Shah VV; Zamora MJ; Kelly LE; El-Hodiri HM; Sater AK Genesis; 2020 Mar; 58(3-4):e23354. PubMed ID: 31909537 [TBL] [Abstract][Full Text] [Related]
8. Identification and comparative analyses of Siamois cluster genes in Xenopus laevis and tropicalis. Haramoto Y; Saijyo T; Tanaka T; Furuno N; Suzuki A; Ito Y; Kondo M; Taira M; Takahashi S Dev Biol; 2017 Jun; 426(2):374-383. PubMed ID: 27522305 [TBL] [Abstract][Full Text] [Related]
9. Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. Wills A; Harland RM; Khokha MK Dev Biol; 2006 Jan; 289(1):166-78. PubMed ID: 16321373 [TBL] [Abstract][Full Text] [Related]
10. MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. Baldessari D; Badaloni A; Longhi R; Zappavigna V; Consalez GG BMC Cell Biol; 2004 Dec; 5(1):48. PubMed ID: 15613244 [TBL] [Abstract][Full Text] [Related]
11. Expression of the ALK1 family of type I BMP/ADMP receptors during gastrula stages in Xenopus embryos. Leibovich A; Steinbeißer H; Fainsod A Int J Dev Biol; 2017; 61(6-7):465-470. PubMed ID: 28695967 [TBL] [Abstract][Full Text] [Related]
12. Developmental RNA processing of 3'UTRs in Hox mRNAs as a context-dependent mechanism modulating visibility to microRNAs. Thomsen S; Azzam G; Kaschula R; Williams LS; Alonso CR Development; 2010 Sep; 137(17):2951-60. PubMed ID: 20667912 [TBL] [Abstract][Full Text] [Related]
13. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis. Nelson KK; Nelson RW BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906 [TBL] [Abstract][Full Text] [Related]
14. Zygotic expression of Exostosin1 (Ext1) is required for BMP signaling and establishment of dorsal-ventral pattern in Xenopus. Shieh YE; Wells DE; Sater AK Int J Dev Biol; 2014; 58(1):27-34. PubMed ID: 24860992 [TBL] [Abstract][Full Text] [Related]
15. Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. Lund E; Liu M; Hartley RS; Sheets MD; Dahlberg JE RNA; 2009 Dec; 15(12):2351-63. PubMed ID: 19854872 [TBL] [Abstract][Full Text] [Related]
16. A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo. Blitz IL; Paraiso KD; Patrushev I; Chiu WTY; Cho KWY; Gilchrist MJ Dev Biol; 2017 Jun; 426(2):409-417. PubMed ID: 27475627 [TBL] [Abstract][Full Text] [Related]
17. Characterization of small RNAs in X. tropicalis gastrulae. Faunes F; Almonacid LI; Melo F; Larrain J Genesis; 2012 Jul; 50(7):572-83. PubMed ID: 22566284 [TBL] [Abstract][Full Text] [Related]
18. The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Luzi E; Marini F; Tognarini I; Galli G; Falchetti A; Brandi ML Nucleic Acid Ther; 2012 Apr; 22(2):103-8. PubMed ID: 22409234 [TBL] [Abstract][Full Text] [Related]
19. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Agrawal R; Tran U; Wessely O Development; 2009 Dec; 136(23):3927-36. PubMed ID: 19906860 [TBL] [Abstract][Full Text] [Related]
20. RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets. Perconti G; Rubino P; Contino F; Bivona S; Bertolazzi G; Tumminello M; Feo S; Giallongo A; Coronnello C BMC Bioinformatics; 2019 Apr; 20(Suppl 4):120. PubMed ID: 30999843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]