These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 26548645)

  • 1. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films.
    Molatta S; Haindl S; Trommler S; Schulze M; Wurmehl S; Hühne R
    Sci Rep; 2015 Nov; 5():16334. PubMed ID: 26548645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges for Pulsed Laser Deposition of FeSe Thin Films.
    Obata Y; Karateev IA; Pavlov I; Vasiliev AL; Haindl S
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Composition Control at the Substrate Interface as the Key for FeSe Thin-Film Growth.
    Obata Y; Sato M; Kondo Y; Yamaguchi Y; Karateev IA; Pavlov I; Vasiliev AL; Haindl S
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53162-53170. PubMed ID: 34698487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition.
    Feng Z; Yuan J; He G; Hu W; Lin Z; Li D; Jiang X; Huang Y; Ni S; Li J; Zhu B; Dong X; Zhou F; Wang H; Zhao Z; Jin K
    Sci Rep; 2018 Mar; 8(1):4039. PubMed ID: 29511227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe(1-x)Te(x) thin films.
    Imai Y; Sawada Y; Nabeshima F; Maeda A
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):1937-40. PubMed ID: 25646450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting properties of iron chalcogenide thin films.
    Mele P
    Sci Technol Adv Mater; 2012 Oct; 13(5):054301. PubMed ID: 27877514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced Superconducting Transition in Ultra-Thin Iron-Selenide Films by a Mg-Coating Process.
    Cao Z; Chen L; Cheng Z; Qiu W
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the large
    Feng Z; Zhang H; Yuan J; Jiang X; Wu X; Zhao Z; Xu Q; Stanev V; Zhang Q; Yang H; Gu L; Meng S; Weng S; Chen Q; Takeuchi I; Jin K; Zhao Z
    Quantum Front; 2024; 3(1):12. PubMed ID: 38855163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unabridged phase diagram for single-phased FeSe(x)Te(1-x) thin films.
    Zhuang J; Yeoh WK; Cui X; Xu X; Du Y; Shi Z; Ringer SP; Wang X; Dou SX
    Sci Rep; 2014 Dec; 4():7273. PubMed ID: 25449669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ growth of superconducting SmO
    Haindl S; Hanzawa K; Sato H; Hiramatsu H; Hosono H
    Sci Rep; 2016 Oct; 6():35797. PubMed ID: 27767066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Interface Structure of FeSe Thin Film on CaF
    Qiu W; Ma Z; Patel D; Sang L; Cai C; Shahriar Al Hossain M; Cheng Z; Wang X; Dou SX
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37446-37453. PubMed ID: 29019397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Superconductivity in FeSe Thin Films via Magnesium Doping.
    Qiu W; Ma Z; Liu Y; Shahriar Al Hossain M; Wang X; Cai C; Dou SX
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7891-6. PubMed ID: 26955971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray diffraction data and analysis to support phase identification in FeSe and Fe
    Harris SB; Camata RP
    Data Brief; 2019 Dec; 27():104778. PubMed ID: 31763420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the emergence of higher T
    Seo S; Kang JH; Oh MJ; Jeong IS; Jiang J; Gu G; Lee JW; Lee J; Noh H; Liu M; Gao P; Hellstrom EE; Lee JH; Jo YJ; Eom CB; Lee S
    Sci Rep; 2017 Aug; 7(1):9994. PubMed ID: 28855591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates.
    Mohammed WM; Yanilkin IV; Gumarov AI; Kiiamov AG; Yusupov RV; Tagirov LR
    Beilstein J Nanotechnol; 2020; 11():807-813. PubMed ID: 32509494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and superconductivity of iron selenide thin films.
    Han Y; Li WY; Cao LX; Zhang S; Xu B; Zhao BR
    J Phys Condens Matter; 2009 Jun; 21(23):235702. PubMed ID: 21825594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate dependent structural and magnetic properties of pulsed laser deposited Fe3O4 thin films.
    Goyal RN; Kaur D; Pandey AK
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8018-25. PubMed ID: 21121292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of structural transition in FeSe
    Imai Y; Sawada Y; Nabeshima F; Asami D; Kawai M; Maeda A
    Sci Rep; 2017 Apr; 7():46653. PubMed ID: 28429806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hybrid Pulsed Laser Deposition Approach to Grow Thin Films of Chalcogenides.
    Surendran M; Singh S; Chen H; Wu C; Avishai A; Shao YT; Ravichandran J
    Adv Mater; 2024 May; 36(19):e2312620. PubMed ID: 38288906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ge-Sb-Te Chalcogenide Thin Films Deposited by Nanosecond, Picosecond, and Femtosecond Laser Ablation.
    Bulai G; Pompilian O; Gurlui S; Nemec P; Nazabal V; Cimpoesu N; Chazallon B; Focsa C
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.