These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 26548651)
1. Proteome effects of antipsychotic drugs: Learning from preclinical models. Carboni L; Domenici E Proteomics Clin Appl; 2016 Apr; 10(4):430-41. PubMed ID: 26548651 [TBL] [Abstract][Full Text] [Related]
2. Employing proteomics to unravel the molecular effects of antipsychotics and their role in schizophrenia. Cassoli JS; Guest PC; Santana AG; Martins-de-Souza D Proteomics Clin Appl; 2016 Apr; 10(4):442-55. PubMed ID: 26679983 [TBL] [Abstract][Full Text] [Related]
3. Proteome and pathway effects of chronic haloperidol treatment in mouse hippocampus. Schubert KO; Föcking M; Wynne K; Cotter DR Proteomics; 2016 Feb; 16(3):532-8. PubMed ID: 26607048 [TBL] [Abstract][Full Text] [Related]
4. Neuropathology markers and pathways associated with molecular targets for antipsychotic drugs in postmortem brain tissues: exploration of drug targets through the Stanley Neuropathology Integrative Database. Kim S; Zavitsanou K; Gurguis G; Webster MJ Eur Neuropsychopharmacol; 2012 Oct; 22(10):683-94. PubMed ID: 22356822 [TBL] [Abstract][Full Text] [Related]
5. HIV-1 transgenic rats display mitochondrial abnormalities consistent with abnormal energy generation and distribution. Villeneuve LM; Purnell PR; Stauch KL; Callen SE; Buch SJ; Fox HS J Neurovirol; 2016 Oct; 22(5):564-574. PubMed ID: 26843384 [TBL] [Abstract][Full Text] [Related]
6. New insights on the mitochondrial proteome plasticity in Parkinson's disease. Aroso M; Ferreira R; Freitas A; Vitorino R; Gomez-Lazaro M Proteomics Clin Appl; 2016 Apr; 10(4):416-29. PubMed ID: 26749507 [TBL] [Abstract][Full Text] [Related]
7. Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. Pillai A; Parikh V; Terry AV; Mahadik SP J Psychiatr Res; 2007 Aug; 41(5):372-86. PubMed ID: 16564057 [TBL] [Abstract][Full Text] [Related]
8. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity. Annunen-Rasila J; Ohlmeier S; Tuokko H; Veijola J; Majamaa K Proteomics; 2007 Jun; 7(13):2189-200. PubMed ID: 17533645 [TBL] [Abstract][Full Text] [Related]
9. A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. Ji B; La Y; Gao L; Zhu H; Tian N; Zhang M; Yang Y; Zhao X; Tang R; Ma G; Zhou J; Meng J; Ma J; Zhang Z; Li H; Feng G; Wang Y; He L; Wan C J Proteome Res; 2009 Jul; 8(7):3633-41. PubMed ID: 19441803 [TBL] [Abstract][Full Text] [Related]
11. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Gibson BW Int J Biochem Cell Biol; 2005 May; 37(5):927-34. PubMed ID: 15743667 [TBL] [Abstract][Full Text] [Related]
12. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Seabra G; de Almeida V; Reis-de-Oliveira G; Crunfli F; Antunes ASLM; Martins-de-Souza D Sci Rep; 2020 Jul; 10(1):12655. PubMed ID: 32724114 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the expression of genes affecting cytomatrix active zone function in the amygdala in schizophrenia: effects of antipsychotic drugs. Weidenhofer J; Scott RJ; Tooney PA J Psychiatr Res; 2009 Jan; 43(3):282-90. PubMed ID: 18490030 [TBL] [Abstract][Full Text] [Related]
14. A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia. Rizig MA; McQuillin A; Ng A; Robinson M; Harrison A; Zvelebil M; Hunt SP; Gurling HM J Psychopharmacol; 2012 Sep; 26(9):1218-30. PubMed ID: 22767372 [TBL] [Abstract][Full Text] [Related]
15. Novel pharmacological approaches to the treatment of schizophrenia. Fink-Jensen A Dan Med Bull; 2000 Jun; 47(3):151-67. PubMed ID: 10913983 [TBL] [Abstract][Full Text] [Related]
16. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. Padrão AI; Vitorino R; Duarte JA; Ferreira R; Amado F J Proteome Res; 2013 Oct; 12(10):4257-67. PubMed ID: 23964737 [TBL] [Abstract][Full Text] [Related]
17. Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer's disease. Chou JL; Shenoy DV; Thomas N; Choudhary PK; Laferla FM; Goodman SR; Breen GA J Proteomics; 2011 Apr; 74(4):466-79. PubMed ID: 21237293 [TBL] [Abstract][Full Text] [Related]
18. Antipsychotics increase microtubule-associated protein 2 mRNA but not spinophilin mRNA in rat hippocampus and cortex. Law AJ; Hutchinson LJ; Burnet PW; Harrison PJ J Neurosci Res; 2004 May; 76(3):376-82. PubMed ID: 15079866 [TBL] [Abstract][Full Text] [Related]
19. [Drawing up guidelines for the attendance of physical health of patients with severe mental illness]. Saravane D; Feve B; Frances Y; Corruble E; Lancon C; Chanson P; Maison P; Terra JL; Azorin JM; Encephale; 2009 Sep; 35(4):330-9. PubMed ID: 19748369 [TBL] [Abstract][Full Text] [Related]
20. Glutamate receptor 1 phosphorylation at serine 845 contributes to the therapeutic effect of olanzapine on schizophrenia-like cognitive impairments. Zhang C; Fang Y; Xu L Schizophr Res; 2014 Nov; 159(2-3):376-84. PubMed ID: 25219486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]