These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26548712)

  • 1. Quantum Dot and Polymer Composite Cross-Reactive Array for Chemical Vapor Detection.
    Bright CJ; Nallon EC; Polcha MP; Schnee VP
    Anal Chem; 2015 Dec; 87(24):12270-5. PubMed ID: 26548712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene.
    Chen Y; Chen Z; He Y; Lin H; Sheng P; Liu C; Luo S; Cai Q
    Nanotechnology; 2010 Mar; 21(12):125502. PubMed ID: 20203361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds.
    Shi GH; Shang ZB; Wang Y; Jin WJ; Zhang TC
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):247-52. PubMed ID: 17870656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor.
    Goldman ER; Medintz IL; Whitley JL; Hayhurst A; Clapp AR; Uyeda HT; Deschamps JR; Lassman ME; Mattoussi H
    J Am Chem Soc; 2005 May; 127(18):6744-51. PubMed ID: 15869297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of CdSe quantum dots for the direct detection of TNT.
    Yi KY
    Forensic Sci Int; 2016 Feb; 259():101-5. PubMed ID: 26773219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent polymer sensor array for detection and discrimination of explosives in water.
    Woodka MD; Schnee VP; Polcha MP
    Anal Chem; 2010 Dec; 82(23):9917-24. PubMed ID: 21069967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dot-containing polymer particles with thermosensitive fluorescence.
    Generalova AN; Oleinikov VA; Sukhanova A; Artemyev MV; Zubov VP; Nabiev I
    Biosens Bioelectron; 2013 Jan; 39(1):187-93. PubMed ID: 22884648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-Functionalized Quantum Dots for Rapid Label-Free Sensing of 2,4,6-Trinitrotoluene.
    Komikawa T; Tanaka M; Tamang A; Evans SD; Critchley K; Okochi M
    Bioconjug Chem; 2020 May; 31(5):1400-1407. PubMed ID: 32281783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual recognition of TNT using antibodies polymeric shell having CdS.
    Say R; Büyüktiryaki S; Hür D; Yilmaz F; Ersöz A
    Talanta; 2012 Feb; 90():103-8. PubMed ID: 22340123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ encapsulation of quantum dots into polymer microspheres.
    Sheng W; Kim S; Lee J; Kim SW; Jensen K; Bawendi MG
    Langmuir; 2006 Apr; 22(8):3782-90. PubMed ID: 16584256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence enhancement of cadmium selenide quantum dots assembled on silver nanoparticles and its application to glucose detection.
    Tang Y; Yang Q; Wu T; Liu L; Ding Y; Yu B
    Langmuir; 2014 Jun; 30(22):6324-30. PubMed ID: 24841317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine.
    Liu H; Fang G; Wang S
    Biosens Bioelectron; 2014 May; 55():127-32. PubMed ID: 24370883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly.
    Xia Y; Song L; Zhu C
    Anal Chem; 2011 Feb; 83(4):1401-7. PubMed ID: 21261282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratiometric CdSe/ZnS quantum dot protein sensor.
    Tyrakowski CM; Snee PT
    Anal Chem; 2014 Mar; 86(5):2380-6. PubMed ID: 24506832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile method for the preparation of water-soluble amphiphilic oligomer-coated semiconductor quantum dots with high fluorescence and stability.
    Zhou C; Shen H; Guo Y; Xu L; Niu J; Zhang Z; Du Z; Chen J; Li LS
    J Colloid Interface Sci; 2010 Apr; 344(2):279-85. PubMed ID: 20129617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures.
    Hammer NI; Early KT; Sill K; Odoi MY; Emrick T; Barnes MD
    J Phys Chem B; 2006 Jul; 110(29):14167-71. PubMed ID: 16854115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced fluorescence intermittency of CdSe-ZnS quantum-dot clusters.
    Yu M; Van Orden A
    Phys Rev Lett; 2006 Dec; 97(23):237402. PubMed ID: 17280243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CdSe/ZnS quantum dot-Cytochrome c bioconjugates for selective intracellular O2˙⁻ sensing.
    Li DW; Qin LX; Li Y; Nia RP; Long YT; Chen HY
    Chem Commun (Camb); 2011 Aug; 47(30):8539-41. PubMed ID: 21709927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot.
    Xun Z; Zhao X; Guan Y
    Nanotechnology; 2013 Sep; 24(35):355504. PubMed ID: 23924819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.