BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26549205)

  • 1. Endoperoxides Revealed as Origin of the Toxicity of Graphene Oxide.
    Pieper H; Chercheja S; Eigler S; Halbig CE; Filipovic MR; Mokhir A
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):405-7. PubMed ID: 26549205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systems toxicology approach to the surface functionality control of graphene-cell interactions.
    Chatterjee N; Eom HJ; Choi J
    Biomaterials; 2014 Jan; 35(4):1109-27. PubMed ID: 24211078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing biocompatibility of graphene oxide-based nanocarriers: A review.
    Kiew SF; Kiew LV; Lee HB; Imae T; Chung LY
    J Control Release; 2016 Mar; 226():217-28. PubMed ID: 26873333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.
    Xu M; Zhu J; Wang F; Xiong Y; Wu Y; Wang Q; Weng J; Zhang Z; Chen W; Liu S
    ACS Nano; 2016 Mar; 10(3):3267-81. PubMed ID: 26855010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake.
    Zhang H; Peng C; Yang J; Lv M; Liu R; He D; Fan C; Huang Q
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1761-7. PubMed ID: 23402618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles.
    Wu W; Yan L; Chen S; Li Q; Gu Z; Xu H; Yin ZQ
    Nanotoxicology; 2018 Oct; 12(8):819-835. PubMed ID: 29888639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells.
    Wang A; Pu K; Dong B; Liu Y; Zhang L; Zhang Z; Duan W; Zhu Y
    J Appl Toxicol; 2013 Oct; 33(10):1156-64. PubMed ID: 23775274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction between Graphene Oxide and Intracellular Glutathione Affects Cell Viability and Proliferation.
    Ma B; Guo S; Nishina Y; Bianco A
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3528-3535. PubMed ID: 33428377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro toxicity evaluation of graphene oxide on A549 cells.
    Chang Y; Yang ST; Liu JH; Dong E; Wang Y; Cao A; Liu Y; Wang H
    Toxicol Lett; 2011 Feb; 200(3):201-10. PubMed ID: 21130147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Accelerated Proliferation of Malignant Breast Cancer Cells on Planar Graphene Oxide Films.
    Kenry ; Chaudhuri PK; Loh KP; Lim CT
    ACS Nano; 2016 Mar; 10(3):3424-34. PubMed ID: 26919537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel.
    Xu Z; Wang S; Li Y; Wang M; Shi P; Huang X
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17268-76. PubMed ID: 25216036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1).
    Gurunathan S; Kang MH; Jeyaraj M; Kim JH
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress.
    Mittal S; Kumar V; Dhiman N; Chauhan LK; Pasricha R; Pandey AK
    Sci Rep; 2016 Dec; 6():39548. PubMed ID: 28000740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo.
    Li J; Zhang X; Jiang J; Wang Y; Jiang H; Zhang J; Nie X; Liu B
    Toxicol Sci; 2019 Jan; 167(1):269-281. PubMed ID: 30239936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung.
    Duch MC; Budinger GR; Liang YT; Soberanes S; Urich D; Chiarella SE; Campochiaro LA; Gonzalez A; Chandel NS; Hersam MC; Mutlu GM
    Nano Lett; 2011 Dec; 11(12):5201-7. PubMed ID: 22023654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the underlying mechanisms of oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells.
    Zhang W; Yan L; Li M; Zhao R; Yang X; Ji T; Gu Z; Yin JJ; Gao X; Nie G
    Toxicol Lett; 2015 Sep; 237(2):61-71. PubMed ID: 26047786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Structure-Properties-Cytotoxicity Interplay: A Crucial Pathway to Determining Graphene Oxide Biocompatibility.
    Dziewięcka M; Pawlyta M; Majchrzycki Ł; Balin K; Barteczko S; Czerkawska M; Augustyniak M
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of graphene oxide and TiO2-graphene oxide composite in A549 cells.
    Jin C; Wang F; Tang Y; Zhang X; Wang J; Yang Y
    Biol Trace Elem Res; 2014 Jun; 159(1-3):393-8. PubMed ID: 24869803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2.
    Lammel T; Boisseaux P; Fernández-Cruz ML; Navas JM
    Part Fibre Toxicol; 2013 Jul; 10():27. PubMed ID: 23849434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells.
    Russier J; Treossi E; Scarsi A; Perrozzi F; Dumortier H; Ottaviano L; Meneghetti M; Palermo V; Bianco A
    Nanoscale; 2013 Nov; 5(22):11234-47. PubMed ID: 24084792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.