BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 26549481)

  • 1. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments.
    Davidson PM; Sliz J; Isermann P; Denais C; Lammerding J
    Integr Biol (Camb); 2015 Dec; 7(12):1534-46. PubMed ID: 26549481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly and Use of a Microfluidic Device to Study Cell Migration in Confined Environments.
    Keys J; Windsor A; Lammerding J
    Methods Mol Biol; 2018; 1840():101-118. PubMed ID: 30141042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and Use of a Microfluidic Device to Study Nuclear Mechanobiology During Confined Migration.
    Agrawal R; Windsor A; Lammerding J
    Methods Mol Biol; 2022; 2502():329-349. PubMed ID: 35412249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device for characterizing nuclear deformations.
    Hodgson AC; Verstreken CM; Fisher CL; Keyser UF; Pagliara S; Chalut KJ
    Lab Chip; 2017 Feb; 17(5):805-813. PubMed ID: 28116393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated analysis of cell migration and nuclear envelope rupture in confined environments.
    Elacqua JJ; McGregor AL; Lammerding J
    PLoS One; 2018; 13(4):e0195664. PubMed ID: 29649271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments.
    Thiam HR; Vargas P; Carpi N; Crespo CL; Raab M; Terriac E; King MC; Jacobelli J; Alberts AS; Stradal T; Lennon-Dumenil AM; Piel M
    Nat Commun; 2016 Mar; 7():10997. PubMed ID: 26975831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates.
    Booth-Gauthier EA; Du V; Ghibaudo M; Rape AD; Dahl KN; Ladoux B
    Integr Biol (Camb); 2013 Mar; 5(3):569-77. PubMed ID: 23370891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments.
    Davidson PM; Denais C; Bakshi MC; Lammerding J
    Cell Mol Bioeng; 2014 Sep; 7(3):293-306. PubMed ID: 25436017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic device reveals new insights into impairment of neutrophil transmigration in patients with sepsis.
    Qi Y; Wang H; Wu J; Wang R; Xu Z; Cui X; Liu Z
    Biosens Bioelectron; 2024 Sep; 260():116460. PubMed ID: 38843769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the force field required for nucleus deformation during cell migration through constrictions.
    Estabrook ID; Thiam HR; Piel M; Hawkins RJ
    PLoS Comput Biol; 2021 May; 17(5):e1008592. PubMed ID: 34029312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer cell migration in 3D tissue: negotiating space by proteolysis and nuclear deformability.
    Krause M; Wolf K
    Cell Adh Migr; 2015; 9(5):357-66. PubMed ID: 26301444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell migration through three-dimensional confining pores: speed accelerations by deformation and recoil of the nucleus.
    Krause M; Yang FW; Te Lindert M; Isermann P; Schepens J; Maas RJA; Venkataraman C; Lammerding J; Madzvamuse A; Hendriks W; Te Riet J; Wolf K
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1779):20180225. PubMed ID: 31431171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions.
    Rowat AC; Jaalouk DE; Zwerger M; Ung WL; Eydelnant IA; Olins DE; Olins AL; Herrmann H; Weitz DA; Lammerding J
    J Biol Chem; 2013 Mar; 288(12):8610-8618. PubMed ID: 23355469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-lapse lens-free imaging of cell migration in diverse physical microenvironments.
    Mathieu E; Paul CD; Stahl R; Vanmeerbeeck G; Reumers V; Liu C; Konstantopoulos K; Lagae L
    Lab Chip; 2016 Aug; 16(17):3304-16. PubMed ID: 27436197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear Deformation in Response to Mechanical Confinement is Cell Type Dependent.
    Doolin MT; Ornstein TS; Stroka KM
    Cells; 2019 May; 8(5):. PubMed ID: 31072066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration.
    Lee JS; Hale CM; Panorchan P; Khatau SB; George JP; Tseng Y; Stewart CL; Hodzic D; Wirtz D
    Biophys J; 2007 Oct; 93(7):2542-52. PubMed ID: 17631533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells.
    Hanson L; Zhao W; Lou HY; Lin ZC; Lee SW; Chowdary P; Cui Y; Cui B
    Nat Nanotechnol; 2015 Jun; 10(6):554-62. PubMed ID: 25984833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.