BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26549512)

  • 21. Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization.
    Li Z; Stan L; Czaplewski DA; Yang X; Gao J
    Opt Lett; 2019 Jan; 44(1):114-117. PubMed ID: 30645556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-infrared chiral plasmonic metasurface absorbers.
    Ouyang L; Wang W; Rosenmann D; Czaplewski DA; Gao J; Yang X
    Opt Express; 2018 Nov; 26(24):31484-31489. PubMed ID: 30650733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metallic rugate structures for near-perfect absorbers in visible and near-infrared regions.
    Shu S; Li YY
    Opt Lett; 2012 Sep; 37(17):3495-7. PubMed ID: 22940927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting.
    Li Z; Palacios E; Butun S; Aydin K
    Nano Lett; 2015 Mar; 15(3):1615-21. PubMed ID: 25664815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transparent near-infrared reflector metasurface with randomly dispersed silver nanodisks.
    Tani T; Hakuta S; Kiyoto N; Naya M
    Opt Express; 2014 Apr; 22(8):9262-70. PubMed ID: 24787814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible.
    Zhang J; ElKabbash M; Wei R; Singh SC; Lam B; Guo C
    Light Sci Appl; 2019; 8():53. PubMed ID: 31231519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling.
    Wu D; Yang L; Liu C; Xu Z; Liu Y; Yu Z; Yu L; Chen L; Ma R; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):144. PubMed ID: 29748920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile Film-Nanoctahedron Assembly Route to Plasmonic Metamaterial Absorbers at Visible Frequencies.
    Zhang H; Guan C; Luo J; Yuan Y; Song N; Zhang Y; Fang J; Liu H
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20241-20248. PubMed ID: 31083897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces.
    Chen W; Tymchenko M; Gopalan P; Ye X; Wu Y; Zhang M; Murray CB; Alu A; Kagan CR
    Nano Lett; 2015 Aug; 15(8):5254-60. PubMed ID: 26161503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects.
    Tittl A; Harats MG; Walter R; Yin X; Schäferling M; Liu N; Rapaport R; Giessen H
    ACS Nano; 2014 Oct; 8(10):10885-92. PubMed ID: 25251075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broadband Terahertz Near-Perfect Absorbers.
    Cheng X; Huang R; Xu J; Xu X
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33352-33360. PubMed ID: 32526137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large-Scale, Bandwidth-Adjustable, Visible Absorbers by Evaporation and Annealing Process.
    Long X; Yue W; Su Y; Chen W; Li L
    Nanoscale Res Lett; 2019 Feb; 14(1):48. PubMed ID: 30756198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabricating defogging metasurfaces
    Khoruzhenko O; Dudko V; Rosenfeldt S; Breu J
    Mater Horiz; 2023 Aug; 10(9):3749-3760. PubMed ID: 37404036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perfect absorption in GaAs metasurfaces near the bandgap edge.
    Hale LL; Vabischevich PP; Siday T; Harris CT; Luk TS; Addamane SJ; Reno JL; Brener I; Mitrofanov O
    Opt Express; 2020 Nov; 28(23):35284-35296. PubMed ID: 33182978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles.
    Zhang Y; Wei T; Dong W; Zhang K; Sun Y; Chen X; Dai N
    Sci Rep; 2014 May; 4():4850. PubMed ID: 24810434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performing differential operation with a silver dendritic metasurface at visible wavelengths.
    Chen H; An D; Li Z; Zhao X
    Opt Express; 2017 Oct; 25(22):26417-26426. PubMed ID: 29092132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime.
    Wu S; Gu Y; Ye Y; Ye H; Chen L
    Opt Express; 2018 Aug; 26(17):21479-21489. PubMed ID: 30130854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.