BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26549844)

  • 1. Structural Determinants of the Selectivity of 3-Benzyluracil-1-acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10.
    Ruiz FX; Cousido-Siah A; Porté S; Domínguez M; Crespo I; Rechlin C; Mitschler A; de Lera ÁR; Martín MJ; de la Fuente JÁ; Klebe G; Parés X; Farrés J; Podjarny A
    ChemMedChem; 2015 Dec; 10(12):1989-2003. PubMed ID: 26549844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structure of the V301L aldo-keto reductase 1B10 complexed with NADP(+) and the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity.
    Ruiz FX; Cousido-Siah A; Mitschler A; Farrés J; Parés X; Podjarny A
    Chem Biol Interact; 2013 Feb; 202(1-3):178-85. PubMed ID: 23295227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors.
    Cousido-Siah A; Ruiz FX; Fanfrlík J; Giménez-Dejoz J; Mitschler A; Kamlar M; Veselý J; Ajani H; Parés X; Farrés J; Hobza P; Podjarny AD
    ACS Chem Biol; 2016 Oct; 11(10):2693-2705. PubMed ID: 27359042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors.
    Metwally K; Pratsinis H; Kletsas D; Quattrini L; Coviello V; Motta C; El-Rashedy AA; Soliman ME
    Future Med Chem; 2017 Dec; 9(18):2147-2166. PubMed ID: 29098865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis, structure-activity relationships and X-ray structural studies of novel 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as selective and potent inhibitors of human aldose reductase.
    Crespo I; Giménez-Dejoz J; Porté S; Cousido-Siah A; Mitschler A; Podjarny A; Pratsinis H; Kletsas D; Parés X; Ruiz FX; Metwally K; Farrés J
    Eur J Med Chem; 2018 May; 152():160-174. PubMed ID: 29705708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the inhibition of AKR1B10 by the C3 brominated TTNPB derivative UVI2008.
    Ruiz FX; Crespo I; Álvarez S; Porté S; Giménez-Dejoz J; Cousido-Siah A; Mitschler A; de Lera ÁR; Parés X; Podjarny A; Farrés J
    Chem Biol Interact; 2017 Oct; 276():174-181. PubMed ID: 28161411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design.
    Cousido-Siah A; Ruiz FX; Mitschler A; Porté S; de Lera ÁR; Martín MJ; Manzanaro S; de la Fuente JA; Terwesten F; Betz M; Klebe G; Farrés J; Parés X; Podjarny A
    Acta Crystallogr D Biol Crystallogr; 2014 Mar; 70(Pt 3):889-903. PubMed ID: 24598757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing flexibility and "induced-fit" phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations.
    Sotriffer CA; Krämer O; Klebe G
    Proteins; 2004 Jul; 56(1):52-66. PubMed ID: 15162486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity determinants of inhibitor binding to the tumour marker human aldose reductase-like protein (AKR1B10) discovered from molecular docking and database screening.
    Zhao HT; Soda M; Endo S; Hara A; El-Kabbani O
    Eur J Med Chem; 2010 Sep; 45(9):4354-7. PubMed ID: 20538382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a novel binding site conformer of aldose reductase in ligand-bound state.
    Steuber H; Zentgraf M; La Motta C; Sartini S; Heine A; Klebe G
    J Mol Biol; 2007 May; 369(1):186-97. PubMed ID: 17418233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and structure-activity relationship of 2-phenyliminochromene derivatives as inhibitors for aldo-keto reductase (AKR) 1B10.
    Endo S; Hu D; Suyama M; Matsunaga T; Sugimoto K; Matsuya Y; El-Kabbani O; Kuwata K; Hara A; Kitade Y; Toyooka N
    Bioorg Med Chem; 2013 Nov; 21(21):6378-84. PubMed ID: 24071447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual screening for inhibitors of human aldose reductase.
    Kraemer O; Hazemann I; Podjarny AD; Klebe G
    Proteins; 2004 Jun; 55(4):814-23. PubMed ID: 15146480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and biological evaluation of novel (1-thioxo-1,2,3,4-tetrahydro-β-carbolin-9-yl)acetic acids as selective inhibitors for AKR1B1.
    Minehira D; Takeda D; Urata H; Kato A; Adachi I; Wang X; Matsuya Y; Sugimoto K; Takemura M; Endo S; Matsunaga T; Hara A; Koseki J; Narukawa K; Hirono S; Toyooka N
    Bioorg Med Chem; 2012 Jan; 20(1):356-67. PubMed ID: 22104435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and thermodynamic study on aldose reductase: nitro-substituted inhibitors with strong enthalpic binding contribution.
    Steuber H; Heine A; Klebe G
    J Mol Biol; 2007 May; 368(3):618-38. PubMed ID: 17368668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring structural requirements for aldose-reductase inhibition by 2,4-dioxo-5-(naphth-2-ylmethylene)-3-thiazolidinyl acetic acids and 2-thioxo analogues: Fujita-Ban and Hansch approach.
    Soni LK; Kaskhedikar SG
    Arch Pharm (Weinheim); 2006 Jun; 339(6):327-31. PubMed ID: 16622827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of sulindac as an inhibitor of aldose reductase and AKR1B10.
    Cousido-Siah A; Ruiz FX; Crespo I; Porté S; Mitschler A; Parés X; Podjarny A; Farrés J
    Chem Biol Interact; 2015 Jun; 234():290-6. PubMed ID: 25532697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral resolution, determination of absolute configuration, and biological evaluation of (1,2-benzothiazin-4-yl)acetic acid enantiomers as aldose reductase inhibitors.
    Hao X; Qin X; Hussain S; Parveen S; Zhang W; Fu F; Ma B; Zhu C
    J Enzyme Inhib Med Chem; 2015; 30(5):846-51. PubMed ID: 25431147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective aldose reductase inhibitors. 3. Structural diversity of 3-(arylmethyl)-2,4,5-trioxoimidazolidine-1-acetic acids.
    Kotani T; Nagaki Y; Ishii A; Konishi Y; Yago H; Suehiro S; Okukado N; Okamoto K
    J Med Chem; 1997 Feb; 40(5):684-94. PubMed ID: 9057855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitor selectivity between aldo-keto reductase superfamily members AKR1B10 and AKR1B1: role of Trp112 (Trp111).
    Zhang L; Zhang H; Zhao Y; Li Z; Chen S; Zhai J; Chen Y; Xie W; Wang Z; Li Q; Zheng X; Hu X
    FEBS Lett; 2013 Nov; 587(22):3681-6. PubMed ID: 24100137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity pocket in the active site of human aldo-keto reductase 1B10.
    Soda M; Hu D; Endo S; Takemura M; Li J; Wada R; Ifuku S; Zhao HT; El-Kabbani O; Ohta S; Yamamura K; Toyooka N; Hara A; Matsunaga T
    Eur J Med Chem; 2012 Feb; 48():321-9. PubMed ID: 22236472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.