BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26549880)

  • 1. Effects of tertiapin-Q and ZD7288 on changes in sinoatrial pacemaker rhythm during vagal stimulation.
    Han SY; Bolter CP
    Auton Neurosci; 2015 Dec; 193():117-26. PubMed ID: 26549880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tertiapin-Q removes a large and rapidly acting component of vagal slowing of the guinea-pig cardiac pacemaker.
    Bolter CP; Turner MJ
    Auton Neurosci; 2009 Oct; 150(1-2):76-81. PubMed ID: 19481505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of tertiapin-Q on responses of the sinoatrial pacemaker of the guinea-pig heart to vagal nerve stimulation and muscarinic agonists.
    Bolter CP; English DJ
    Exp Physiol; 2008 Jan; 93(1):53-63. PubMed ID: 17720744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The muscarinic-activated potassium channel always participates in vagal slowing of the guinea-pig sinoatrial pacemaker.
    Han SY; Bolter CP
    Auton Neurosci; 2011 Oct; 164(1-2):96-100. PubMed ID: 21684818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sympathetic and vagal interaction in the control of cardiac pacemaker rhythm in the guinea-pig heart: Importance of expressing heart rhythm using an appropriate metric.
    Elawa S; Persson RM; Han SY; Bolter CP
    Auton Neurosci; 2022 Dec; 243():103025. PubMed ID: 36308871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vagal control of sinoatrial rhythm: a mathematical model.
    Dokos S; Celler BG; Lovell NH
    J Theor Biol; 1996 Sep; 182(1):21-44. PubMed ID: 8917735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tertiapin-Q removes a mechanosensitive component of muscarinic control of the sinoatrial pacemaker in the rat.
    Han S; Wilson SJ; Bolter CP
    Clin Exp Pharmacol Physiol; 2010 Sep; 37(9):900-4. PubMed ID: 20497420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure of Ba2+ and Cs+ to block the effects of vagal nerve stimulation in sinoatrial node cells of the guinea-pig heart.
    Bolter CP; Wallace DJ; Hirst GD
    Auton Neurosci; 2001 Dec; 94(1-2):93-101. PubMed ID: 11775712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic basis of the chronotropic effect of acetylcholine on the rabbit sinoatrial node.
    Boyett MR; Kodama I; Honjo H; Arai A; Suzuki R; Toyama J
    Cardiovasc Res; 1995 Jun; 29(6):867-78. PubMed ID: 7656291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accentuated antagonism in vagal heart rate control mediated through muscarinic potassium channels.
    Mizuno M; Kamiya A; Kawada T; Miyamoto T; Shimizu S; Shishido T; Sugimachi M
    J Physiol Sci; 2008 Dec; 58(6):381-8. PubMed ID: 18842163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bee venom peptide tertiapin underlines the role of I(KACh) in acetylcholine-induced atrioventricular blocks.
    Drici MD; Diochot S; Terrenoire C; Romey G; Lazdunski M
    Br J Pharmacol; 2000 Oct; 131(3):569-77. PubMed ID: 11015309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the effects of I
    Juhász V; Hornyik T; Benák A; Nagy N; Husti Z; Pap R; Sághy L; Virág L; Varró A; Baczkó I
    Can J Physiol Pharmacol; 2018 Jan; 96(1):18-25. PubMed ID: 28892643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ionic channel antagonists barium, cesium, and UL-FS-49 on vagal slowing of atrial rate in dogs.
    Wallick DW; Kuguoglu A; Yang T; Stuesse SL; Levy MN
    Am J Physiol; 1997 Nov; 273(5):H2155-60. PubMed ID: 9374748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory actions of ZENECA ZD7288 on whole-cell hyperpolarization activated inward current (If) in guinea-pig dissociated sinoatrial node cells.
    BoSmith RE; Briggs I; Sturgess NC
    Br J Pharmacol; 1993 Sep; 110(1):343-9. PubMed ID: 7693281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscarinic potassium channels augment dynamic and static heart rate responses to vagal stimulation.
    Mizuno M; Kamiya A; Kawada T; Miyamoto T; Shimizu S; Sugimachi M
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1564-70. PubMed ID: 17526651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo direct monitoring of vagal acetylcholine release to the sinoatrial node.
    Shimizu S; Akiyama T; Kawada T; Shishido T; Yamazaki T; Kamiya A; Mizuno M; Sano S; Sugimachi M
    Auton Neurosci; 2009 Jun; 148(1-2):44-9. PubMed ID: 19278905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large conductance Ca2+-activated K+ channels inhibit vagal acetylcholine release at the rabbit sinoatrial node.
    Kawada T; Akiyama T; Shimizu S; Kamiya A; Uemura K; Sata Y; Shirai M; Sugimachi M
    Auton Neurosci; 2010 Aug; 156(1-2):149-51. PubMed ID: 20435521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway.
    Herring N; Lokale MN; Danson EJ; Heaton DA; Paterson DJ
    J Mol Cell Cardiol; 2008 Mar; 44(3):477-85. PubMed ID: 17996892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shift of leading pacemaker site during reflex vagal stimulation and altered electrical source-to-sink balance.
    Ashton JL; Trew ML; LeGrice IJ; Paterson DJ; Paton JF; Gillis AM; Smaill BH
    J Physiol; 2019 Jul; 597(13):3297-3313. PubMed ID: 31087820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of DiFrancesco-Noble equations to simulate the effects of vagal stimulation on in vivo mammalian sinoatrial node electrical activity.
    Dokos S; Celler BG; Lovell NH
    Ann Biomed Eng; 1993; 21(4):321-35. PubMed ID: 8214817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.