BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26549889)

  • 1. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers.
    Rajic L; Fallahpour N; Nazari R; Alshawabkeh AN
    Electrochim Acta; 2015 Nov; 181():123-129. PubMed ID: 26549889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution.
    Rajic L; Fallahpour N; Alshawabkeh AN
    Appl Catal B; 2015 Sep; 174-175():427-434. PubMed ID: 25931774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.
    Rajic L; Fallahpour N; Podlaha E; Alshawabkeh A
    Chemosphere; 2016 Mar; 147():98-104. PubMed ID: 26761603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical transformation of thichloroethylene in groundwater by Ni-containing cathodes.
    Rajic L; Fallahpour N; Oguzie E; Alshawabkeh A
    Electrochim Acta; 2015 Nov; 181():118-122. PubMed ID: 26538681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.
    Fallahpour N; Yuan S; Rajic L; Alshawabkeh AN
    Chemosphere; 2016 Feb; 144():59-64. PubMed ID: 26344148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical dechlorination of trichloroethylene in the presence of natural organic matter, metal ions and nitrates in a simulated karst media.
    Fallahpour N; Mao X; Rajic L; Yuan S; Alshawabkeh AN
    J Environ Chem Eng; 2017 Feb; 5(1):240-245. PubMed ID: 29744302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical degradation of trichloroethylene in aqueous solution by bipolar graphite electrodes.
    Rajic L; Nazari R; Fallahpour N; Alshawabkeh AN
    J Environ Chem Eng; 2016 Mar; 4(1):197-202. PubMed ID: 26955517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low permeability zone remediation of trichloroethene via coupling electrokinetic migration with in situ electrochemical hydrodechlorination.
    Liu B; Li G; Mumford KG; Kueper BH; Zhang F
    Chemosphere; 2020 Jul; 250():126209. PubMed ID: 32113096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.
    Mao X; Yuan S; Fallahpour N; Ciblak A; Howard J; Padilla I; Loch-Caruso R; Alshawabkeh AN
    Environ Sci Technol; 2012 Nov; 46(21):12003-11. PubMed ID: 23067023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE).
    Liu B; Zhang H; Lu Q; Li G; Zhang F
    Sci Total Environ; 2018 Sep; 635():1417-1425. PubMed ID: 29710594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system.
    Zang X; Gu X; Lu S; Qiu Z; Sui Q; Lin K; Du X
    Environ Technol; 2014; 35(5-8):791-8. PubMed ID: 24645461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical remediation of trichloroethene-contaminated groundwater using palladized iron oxides.
    Roh Y; Cho KS; Lee S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(6):923-33. PubMed ID: 11501315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the electrode arrangements on reductive dechlorination of trichloroethylene in an electro-enhanced iron wall.
    Liu CC; Liau SF; Tseng DH
    Environ Technol; 2006 Jun; 27(6):683-93. PubMed ID: 16865924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.
    Xie W; Yuan S; Mao X; Hu W; Liao P; Tong M; Alshawabkeh AN
    Water Res; 2013 Jul; 47(11):3573-82. PubMed ID: 23726693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry.
    Kilduff JE; Karanfil T
    Water Res; 2002 Apr; 36(7):1685-98. PubMed ID: 12044068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of humic acid on the trichloroethene degradation by Dehalococcoides-containing consortium.
    Hu M; Zhang Y; Wang Z; Jiang Z; Li J
    J Hazard Mater; 2011 Jun; 190(1-3):1074-8. PubMed ID: 21501929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.
    Wang Q; Jeong SW; Choi H
    J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes.
    Mao X; Ciblak A; Baek K; Amiri M; Loch-Caruso R; Alshawabkeh AN
    Water Res; 2012 Apr; 46(6):1847-57. PubMed ID: 22264798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.