These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 26549938)

  • 21. An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates.
    Rafeie M; Welleweerd M; Hassanzadeh-Barforoushi A; Asadnia M; Olthuis W; Ebrahimi Warkiani M
    Biomicrofluidics; 2017 Jan; 11(1):014108. PubMed ID: 28798843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward the Next Generation of Passive Micromixers: A Novel 3-D Design Approach.
    Okuducu MB; Aral MM
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics.
    Delgado P; Oshinowo O; Fay ME; Luna CA; Dissanayaka A; Dorbala P; Ravindran A; Shen L; Myers DR
    Biomicrofluidics; 2023 Jan; 17(1):014104. PubMed ID: 36687143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer design of microfluidic mixers for protein/RNA folding studies.
    Inguva V; Kathuria SV; Bilsel O; Perot BJ
    PLoS One; 2018; 13(6):e0198534. PubMed ID: 29924842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Planar Microfluidic Mixer Based on Logarithmic Spirals.
    Scherr T; Quitadamo C; Tesvich P; Park DS; Tiersch T; Hayes D; Choi JW; Nandakumar K; Monroe WT
    J Micromech Microeng; 2012; 22(5):55019. PubMed ID: 23956497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Static micromixers based on large-scale industrial mixer geometry.
    Bertsch A; Heimgartner S; Cousseau P; Renaud P
    Lab Chip; 2001 Sep; 1(1):56-60. PubMed ID: 15100890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Mixing Performance Induced by Double Curved Passive Mixing Structures in Microfluidic Channels.
    Oevreeide IH; Zoellner A; Stokke BT
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34068289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving alternate flow mixing by obstacles located along a micro-channel.
    Miranda JM; Teixeira JA; Vicente AA; Correia JH; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7034-6. PubMed ID: 19964194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography.
    Xi C; Marks DL; Parikh DS; Raskin L; Boppart SA
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7516-21. PubMed ID: 15136742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serpentine Micromixers Using Extensional Mixing Elements.
    Tomaras G; Kothapalli CR; Fodor PS
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
    Farshchian B; Amirsadeghi A; Choi J; Park DS; Kim N; Park S
    Nano Converg; 2017; 4(1):4. PubMed ID: 28303213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational modeling of passive furrowed channel micromixers for lab-on-a-chip applications.
    Nason F; Pennati G; Dubini G
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):278-85. PubMed ID: 24700264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.
    Taheri RA; Goodarzi V; Allahverdi A
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31744080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidic mixing triggered by an external LED illumination.
    Venancio-Marques A; Barbaud F; Baigl D
    J Am Chem Soc; 2013 Feb; 135(8):3218-23. PubMed ID: 23350581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear microfluidics: device physics, functions, and applications.
    Xia HM; Wu JW; Zheng JJ; Zhang J; Wang ZP
    Lab Chip; 2021 Apr; 21(7):1241-1268. PubMed ID: 33877234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
    Sivashankar S; Agambayev S; Mashraei Y; Li EQ; Thoroddsen ST; Salama KN
    Biomicrofluidics; 2016 May; 10(3):034120. PubMed ID: 27453767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
    Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J
    Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.