BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26550764)

  • 21. Roles of Edc3 in the oxidative stress response and CaMCA1-encoded metacaspase expression in Candida albicans.
    Jung JH; Kim J
    FEBS J; 2014 Nov; 281(21):4841-51. PubMed ID: 25158786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition.
    Silva S; Henriques M; Martins A; Oliveira R; Williams D; Azeredo J
    Med Mycol; 2009 Nov; 47(7):681-9. PubMed ID: 19888800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.
    Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H
    Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans.
    Komalapriya C; Kaloriti D; Tillmann AT; Yin Z; Herrero-de-Dios C; Jacobsen MD; Belmonte RC; Cameron G; Haynes K; Grebogi C; de Moura AP; Gow NA; Thiel M; Quinn J; Brown AJ; Romano MC
    PLoS One; 2015; 10(9):e0137750. PubMed ID: 26368573
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Hsu CM; Liao YL; Chang CK; Lan CY
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638975
    [No Abstract]   [Full Text] [Related]  

  • 26. Als3-mediated attachment of enolase on the surface of Candida albicans cells regulates their interactions with host proteins.
    Karkowska-Kuleta J; Wronowska E; Satala D; Zawrotniak M; Bras G; Kozik A; Nobbs AH; Rapala-Kozik M
    Cell Microbiol; 2021 Apr; 23(4):e13297. PubMed ID: 33237623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Candida species extracellular alcohols: production and effect in sessile cells.
    Martins M; Henriques M; Azeredo J; Rocha SM; Coimbra MA; Oliveira R
    J Basic Microbiol; 2010 Dec; 50 Suppl 1():S89-97. PubMed ID: 20473968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of proteins in Sporothrixschenckiisensu stricto in response to oxidative stress induced by hydrogen peroxide.
    Ruiz-Baca E; Leyva-Sánchez H; Calderón-Barraza B; Esquivel-Naranjo U; López-Romero E; López-Rodríguez A; Cuéllar-Cruz M
    Rev Iberoam Micol; 2019; 36(1):17-23. PubMed ID: 30799196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment.
    Gil-Bona A; Amador-García A; Gil C; Monteoliva L
    J Proteomics; 2018 May; 180():70-79. PubMed ID: 29223801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic analysis of the oxidative stress response in Candida albicans.
    Kusch H; Engelmann S; Albrecht D; Morschhäuser J; Hecker M
    Proteomics; 2007 Mar; 7(5):686-97. PubMed ID: 17285563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins.
    de Groot PW; Kraneveld EA; Yin QY; Dekker HL; Gross U; Crielaard W; de Koster CG; Bader O; Klis FM; Weig M
    Eukaryot Cell; 2008 Nov; 7(11):1951-64. PubMed ID: 18806209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress response involving induction of protective enzymes in Candida dubliniensis.
    Tosello ME; Biasoli MS; Luque AG; Magaró HM; Krapp AR
    Med Mycol; 2007 Sep; 45(6):535-40. PubMed ID: 17710623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfaceome of pathogenic yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving method and shotgun proteomic approach.
    Karkowska-Kuleta J; Zajac D; Bochenska O; Kozik A
    Acta Biochim Pol; 2015; 62(4):807-19. PubMed ID: 26636137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of cell wall and membrane proteins from eight Candida species.
    Kobayashi K; Suginaka H
    Sabouraudia; 1984; 22(4):341-4. PubMed ID: 6505910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans.
    Sharma M; Manoharlal R; Puri N; Prasad R
    Biosci Rep; 2010 Dec; 30(6):391-404. PubMed ID: 20017731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pga26 mediates filamentation and biofilm formation and is required for virulence in Candida albicans.
    Laforet L; Moreno I; Sánchez-Fresneda R; Martínez-Esparza M; Martínez JP; Argüelles JC; de Groot PW; Valentín-Gomez E
    FEMS Yeast Res; 2011 Aug; 11(5):389-97. PubMed ID: 21439008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation.
    Hashash R; Younes S; Bahnan W; El Koussa J; Maalouf K; Dimassi HI; Khalaf RA
    Mycoses; 2011 Nov; 54(6):491-500. PubMed ID: 20406396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans.
    Román E; Nombela C; Pla J
    Mol Cell Biol; 2005 Dec; 25(23):10611-27. PubMed ID: 16287872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Candida and candidaemia. Susceptibility and epidemiology.
    Arendrup MC
    Dan Med J; 2013 Nov; 60(11):B4698. PubMed ID: 24192246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.