BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26550783)

  • 1. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.
    Neves AR; Queiroz JF; Costa Lima SA; Figueiredo F; Fernandes R; Reis S
    J Colloid Interface Sci; 2016 Feb; 463():258-65. PubMed ID: 26550783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier.
    Beloqui A; Solinís MÁ; Gascón AR; del Pozo-Rodríguez A; des Rieux A; Préat V
    J Control Release; 2013 Mar; 166(2):115-23. PubMed ID: 23266764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
    Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C
    J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery.
    Li H; Chen M; Su Z; Sun M; Ping Q
    Int J Pharm; 2016 Sep; 511(1):524-537. PubMed ID: 27452421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier.
    Beloqui A; des Rieux A; Préat V
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt B):242-255. PubMed ID: 27117710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport Mechanisms of Solid Lipid Nanoparticles across Caco-2 Cell Monolayers and their Related Cytotoxicology.
    Chai GH; Xu Y; Chen SQ; Cheng B; Hu FQ; You J; Du YZ; Yuan H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5929-40. PubMed ID: 26860241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells.
    He B; Lin P; Jia Z; Du W; Qu W; Yuan L; Dai W; Zhang H; Wang X; Wang J; Zhang X; Zhang Q
    Biomaterials; 2013 Aug; 34(25):6082-98. PubMed ID: 23694903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Construction of Oral Insulin-Loaded Solid Lipid Nanoparticles and Their Intestinal Epithelial Cell Transcytosis Study].
    Zheng YX; He Q; Xu M; Huang Y
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):570-576. PubMed ID: 34323033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyester-Solid Lipid Mixed Nanoparticles with Improved Stability in Gastro-Intestinal Tract Facilitated Oral Delivery of Larotaxel.
    Gou J; Feng S; Liang Y; Fang G; Zhang H; Yin T; Zhang Y; He H; Wang Y; Tang X
    Mol Pharm; 2017 Nov; 14(11):3750-3761. PubMed ID: 28945434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration.
    Wu L; Liu M; Shan W; Cui Y; Zhang Z; Huang Y
    Int J Pharm; 2017 Mar; 520(1-2):216-227. PubMed ID: 28185960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles.
    Yuan H; Chen CY; Chai GH; Du YZ; Hu FQ
    Mol Pharm; 2013 May; 10(5):1865-73. PubMed ID: 23495754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apo E-Functionalization of Solid Lipid Nanoparticles Enhances Brain Drug Delivery: Uptake Mechanism and Transport Pathways.
    Neves AR; Queiroz JF; Lima SAC; Reis S
    Bioconjug Chem; 2017 Apr; 28(4):995-1004. PubMed ID: 28355061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis.
    Roger E; Lagarce F; Garcion E; Benoit JP
    J Control Release; 2009 Dec; 140(2):174-81. PubMed ID: 19699246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium.
    Xia D; He Y; Li Q; Hu C; Huang W; Zhang Y; Wan F; Wang C; Gan Y
    J Control Release; 2018 Jan; 269():159-170. PubMed ID: 29129657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular interactions of a lipid-based nanocarrier model with human keratinocytes: Unravelling transport mechanisms.
    Silva E; Barreiros L; Segundo MA; Costa Lima SA; Reis S
    Acta Biomater; 2017 Apr; 53():439-449. PubMed ID: 28119111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro intestinal co-culture cell model to evaluate intestinal absorption of edelfosine lipid nanoparticles.
    Lasa-Saracíbar B; Guada M; Sebastián V; Blanco-Prieto MJ
    Curr Top Med Chem; 2014; 14(9):1124-32. PubMed ID: 24678709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells.
    Song Q; Wang X; Hu Q; Huang M; Yao L; Qi H; Qiu Y; Jiang X; Chen J; Chen H; Gao X
    Int J Pharm; 2013 Mar; 445(1-2):58-68. PubMed ID: 23380624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers.
    Dou T; Wang J; Han C; Shao X; Zhang J; Lu W
    Int J Biol Macromol; 2019 Oct; 138():791-799. PubMed ID: 31356947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge.
    Bannunah AM; Vllasaliu D; Lord J; Stolnik S
    Mol Pharm; 2014 Dec; 11(12):4363-73. PubMed ID: 25327847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles.
    Silva AC; Kumar A; Wild W; Ferreira D; Santos D; Forbes B
    Int J Pharm; 2012 Oct; 436(1-2):798-805. PubMed ID: 22867992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.