BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 26551016)

  • 1. Charge transport in strongly coupled quantum dot solids.
    Kagan CR; Murray CB
    Nat Nanotechnol; 2015 Dec; 10(12):1013-26. PubMed ID: 26551016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dot solids showing state-resolved band-like transport.
    Lan X; Chen M; Hudson MH; Kamysbayev V; Wang Y; Guyot-Sionnest P; Talapin DV
    Nat Mater; 2020 Mar; 19(3):323-329. PubMed ID: 31988516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications.
    Chistyakov AA; Zvaigzne MA; Nikitenko VR; Tameev AR; Martynov IL; Prezhdo OV
    J Phys Chem Lett; 2017 Sep; 8(17):4129-4139. PubMed ID: 28799772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids.
    Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH
    Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots.
    Dong Y; Wang YK; Yuan F; Johnston A; Liu Y; Ma D; Choi MJ; Chen B; Chekini M; Baek SW; Sagar LK; Fan J; Hou Y; Wu M; Lee S; Sun B; Hoogland S; Quintero-Bermudez R; Ebe H; Todorovic P; Dinic F; Li P; Kung HT; Saidaminov MI; Kumacheva E; Spiecker E; Liao LS; Voznyy O; Lu ZH; Sargent EH
    Nat Nanotechnol; 2020 Aug; 15(8):668-674. PubMed ID: 32632321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint mapping of mobility and trap density in colloidal quantum dot solids.
    Stadler P; Sutherland BR; Ren Y; Ning Z; Simchi A; Thon SM; Hoogland S; Sargent EH
    ACS Nano; 2013 Jul; 7(7):5757-62. PubMed ID: 23786265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-Transport Mechanisms in CuInSe
    Yun HJ; Lim J; Fuhr AS; Makarov NS; Keene S; Law M; Pietryga JM; Klimov VI
    ACS Nano; 2018 Dec; 12(12):12587-12596. PubMed ID: 30495927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TCNQ Interlayers for Colloidal Quantum Dot Light-Emitting Diodes.
    Koh WK; Shin T; Jung C; Cho DK
    Chemphyschem; 2016 Apr; 17(8):1095-7. PubMed ID: 26853901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of the bias-stress effect in ligand-free quantum dot field-effect transistors.
    Tolentino J; Gibbs M; Abelson A; Law M
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37503849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-emitting quantum dot transistors: emission at high charge carrier densities.
    Schornbaum J; Zakharko Y; Held M; Thiemann S; Gannott F; Zaumseil J
    Nano Lett; 2015 Mar; 15(3):1822-8. PubMed ID: 25652433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime.
    Zhitomirsky D; Voznyy O; Levina L; Hoogland S; Kemp KW; Ip AH; Thon SM; Sargent EH
    Nat Commun; 2014 May; 5():3803. PubMed ID: 24801435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices.
    Bakulin AA; Neutzner S; Bakker HJ; Ottaviani L; Barakel D; Chen Z
    ACS Nano; 2013 Oct; 7(10):8771-9. PubMed ID: 24069878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids.
    Chen W; Zhong J; Li J; Saxena N; Kreuzer LP; Liu H; Song L; Su B; Yang D; Wang K; Schlipf J; Körstgens V; He T; Wang K; Müller-Buschbaum P
    J Phys Chem Lett; 2019 May; 10(9):2058-2065. PubMed ID: 30964305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational spectroscopy of electronic processes in emerging photovoltaic materials.
    Jeong KS; Pensack RD; Asbury JB
    Acc Chem Res; 2013 Jul; 46(7):1538-47. PubMed ID: 23514085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Ambipolar to Heavy n-Type Transport in PbS Quantum Dot Solids through Doping with Organic Molecules.
    Nugraha MI; Kumagai S; Watanabe S; Sytnyk M; Heiss W; Loi MA; Takeya J
    ACS Appl Mater Interfaces; 2017 May; 9(21):18039-18045. PubMed ID: 28472887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells.
    Meng L; Xu Q; Thakur UK; Gong L; Zeng H; Shankar K; Wang X
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53942-53949. PubMed ID: 33211957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge Transport in Trap-Sensitized Infrared PbS Quantum-Dot-Based Photoconductors: Pros and Cons.
    Maulu A; Navarro-Arenas J; Rodríguez-Cantó PJ; Sánchez-Royo JF; Abargues R; Suárez I; Martínez-Pastor JP
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30200230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits.
    Goswami PN; Mandal D; Rath AK
    Nanoscale; 2018 Jan; 10(3):1072-1080. PubMed ID: 29271437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.