These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 26551029)
1. Phosphorylcholine-Based Zwitterionic Biocompatible Thermogel. Ko du Y; Patel M; Jung BK; Park JH; Jeong B Biomacromolecules; 2015 Dec; 16(12):3853-62. PubMed ID: 26551029 [TBL] [Abstract][Full Text] [Related]
2. Studies on a novel multi-sensitive hydrogel: influence of the biomimetic phosphorylcholine end-groups on the PEO-PPO-PEO tri-block co-polymers. Meng S; Guo Z; Wang Q; Liu Z; Wang Q; Zhong W; Du Q J Biomater Sci Polym Ed; 2011; 22(4-6):651-64. PubMed ID: 20573315 [TBL] [Abstract][Full Text] [Related]
4. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid). Jin N; Zhang H; Jin S; Dadmun MD; Zhao B J Phys Chem B; 2012 Mar; 116(10):3125-37. PubMed ID: 22352399 [TBL] [Abstract][Full Text] [Related]
5. New biodegradable thermogelling copolymers having very low gelation concentrations. Loh XJ; Goh SH; Li J Biomacromolecules; 2007 Feb; 8(2):585-93. PubMed ID: 17291082 [TBL] [Abstract][Full Text] [Related]
6. Polypeptide thermogels as a three dimensional culture scaffold for hepatogenic differentiation of human tonsil-derived mesenchymal stem cells. Kim SJ; Park MH; Moon HJ; Park JH; Ko du Y; Jeong B ACS Appl Mater Interfaces; 2014 Oct; 6(19):17034-43. PubMed ID: 25192309 [TBL] [Abstract][Full Text] [Related]
7. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity. Li W; Liu Q; Liu L J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859 [TBL] [Abstract][Full Text] [Related]
8. In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels. Kim MS; Kim SK; Kim SH; Hyun H; Khang G; Lee HB Tissue Eng; 2006 Oct; 12(10):2863-73. PubMed ID: 17518655 [TBL] [Abstract][Full Text] [Related]
9. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of biocompatible thermo-responsive gelators based on ABA triblock copolymers. Li C; Tang Y; Armes SP; Morris CJ; Rose SF; Lloyd AW; Lewis AL Biomacromolecules; 2005; 6(2):994-9. PubMed ID: 15762670 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Li Z; Zhang Z; Liu KL; Ni X; Li J Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676 [TBL] [Abstract][Full Text] [Related]
12. Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface. Tanaka M; Mochizuki A J Biomater Sci Polym Ed; 2010; 21(14):1849-63. PubMed ID: 20699056 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, characterization, biodegradability and biocompatibility of a temperature-sensitive PBLA-PEG-PBLA hydrogel as protein delivery system with low critical gelation concentration. Xu Y; Shen Y; Xiong Y; Li C; Sun C; Ouahab A; Tu J Drug Dev Ind Pharm; 2014 Sep; 40(9):1264-75. PubMed ID: 23855735 [TBL] [Abstract][Full Text] [Related]
14. Thermogelling poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) disulfide multiblock copolymer as a thiol-sensitive degradable polymer. Sun KH; Sohn YS; Jeong B Biomacromolecules; 2006 Oct; 7(10):2871-7. PubMed ID: 17025364 [TBL] [Abstract][Full Text] [Related]
15. Microsphere-Incorporated Hybrid Thermogel for Neuronal Differentiation of Tonsil Derived Mesenchymal Stem Cells. Patel M; Moon HJ; Jung BK; Jeong B Adv Healthc Mater; 2015 Jul; 4(10):1565-74. PubMed ID: 26033880 [TBL] [Abstract][Full Text] [Related]
16. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. Jeong Y; Joo MK; Bahk KH; Choi YY; Kim HT; Kim WK; Lee HJ; Sohn YS; Jeong B J Control Release; 2009 Jul; 137(1):25-30. PubMed ID: 19306901 [TBL] [Abstract][Full Text] [Related]
17. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Ding C; Zhao L; Liu F; Cheng J; Gu J; Dan S; Liu C; Qu X; Yang Z Biomacromolecules; 2010 Apr; 11(4):1043-51. PubMed ID: 20337439 [TBL] [Abstract][Full Text] [Related]
18. 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(L-alanine-co-L-phenyl alanine) thermogel. Park MH; Yu Y; Moon HJ; Ko du Y; Kim HS; Lee H; Ryu KH; Jeong B Adv Healthc Mater; 2014 Nov; 3(11):1782-91. PubMed ID: 24958187 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Li C; Buurma NJ; Haq I; Turner C; Armes SP; Castelletto V; Hamley IW; Lewis AL Langmuir; 2005 Nov; 21(24):11026-33. PubMed ID: 16285767 [TBL] [Abstract][Full Text] [Related]
20. The reduced adsorption of lysozyme at the phosphorylcholine incorporated polymer/aqueous solution interface studied by spectroscopic ellipsometry. Murphy EF; Keddie JL; Lu JR; Brewer J; Russell J Biomaterials; 1999 Aug; 20(16):1501-11. PubMed ID: 10458563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]