These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26551115)

  • 1. Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube.
    Martín-Moreno L; de Abajo FJ; García-Vidal FJ
    Phys Rev Lett; 2015 Oct; 115(17):173601. PubMed ID: 26551115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.
    Luo Y; Ahmadi ED; Shayan K; Ma Y; Mistry KS; Zhang C; Hone J; Blackburn JL; Strauf S
    Nat Commun; 2017 Nov; 8(1):1413. PubMed ID: 29123125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction.
    Fagan JA; Hároz EH; Ihly R; Gui H; Blackburn JL; Simpson JR; Lam S; Hight Walker AR; Doorn SK; Zheng M
    ACS Nano; 2015 May; 9(5):5377-90. PubMed ID: 25871430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Luttinger-liquid plasmons in carbon nanotubes by chemical doping.
    Tian X; Gu Q; Duan J; Chen R; Liu H; Hou Y; Chen J
    Nanoscale; 2018 Apr; 10(14):6288-6293. PubMed ID: 29577139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime.
    Jeantet A; Chassagneux Y; Raynaud C; Roussignol P; Lauret JS; Besga B; Estève J; Reichel J; Voisin C
    Phys Rev Lett; 2016 Jun; 116(24):247402. PubMed ID: 27367407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling the coupling of surface plasmons in carbon nanotubes by near-field nanoscopy.
    Tian X; Chen R; Chen J
    Nanoscale; 2021 Aug; 13(29):12454-12459. PubMed ID: 34477610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable range hopping in single-wall carbon nanotube thin films: a processing-structure-property relationship study.
    Luo S; Liu T; Benjamin SM; Brooks JS
    Langmuir; 2013 Jul; 29(27):8694-702. PubMed ID: 23751088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration measurement of length-fractionated colloidal single-wall carbon nanotubes.
    Khripin CY; Tu X; Howarter J; Fagan J; Zheng M
    Anal Chem; 2012 Oct; 84(20):8733-9. PubMed ID: 22994360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous nanosilica dispersants for carbon nanotube.
    Matsuda T; Minami D; Khoerunnisa F; Sunaga M; Nakamura M; Utsumi S; Itoh T; Fujimori T; Hayashi T; Hattori Y; Endo M; Isobe H; Onodera H; Kaneko K
    Langmuir; 2015 Mar; 31(10):3194-202. PubMed ID: 25706991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent Plasmon and Phonon-Plasmon Resonances in Carbon Nanotubes.
    Falk AL; Chiu KC; Farmer DB; Cao Q; Tersoff J; Lee YH; Avouris P; Han SJ
    Phys Rev Lett; 2017 Jun; 118(25):257401. PubMed ID: 28696746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the room-temperature confinement of light by miniaturizing mode sizes into a deep subwavelength scale using dielectric spheres in metal cavities.
    Liu K; Luo Z; Ye WM; Yuan XD; Zhu ZH; Zeng C
    Opt Lett; 2012 Oct; 37(19):4107-9. PubMed ID: 23027294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length-dependent plasmon resonance in single-walled carbon nanotubes.
    Morimoto T; Joung SK; Saito T; Futaba DN; Hata K; Okazaki T
    ACS Nano; 2014 Oct; 8(10):9897-904. PubMed ID: 25283493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates.
    Li HB; Page AJ; Irle S; Morokuma K
    J Am Chem Soc; 2012 Sep; 134(38):15887-96. PubMed ID: 22928987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High purcell factor due to coupling of a single emitter to a dielectric slot waveguide.
    Kolchin P; Pholchai N; Mikkelsen MH; Oh J; Ota S; Islam MS; Yin X; Zhang X
    Nano Lett; 2015 Jan; 15(1):464-8. PubMed ID: 25432015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes.
    Liao Y; Yu DG; Wang X; Chain W; Li XG; Hoek EM; Kaner RB
    Nanoscale; 2013 May; 5(9):3856-62. PubMed ID: 23525119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.