These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26551129)

  • 1. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements.
    Militzer B; Driver KP
    Phys Rev Lett; 2015 Oct; 115(17):176403. PubMed ID: 26551129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas.
    Driver KP; Militzer B
    Phys Rev Lett; 2012 Mar; 108(11):115502. PubMed ID: 22540485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equation of state and shock compression of warm dense sodium-A first-principles study.
    Zhang S; Driver KP; Soubiran F; Militzer B
    J Chem Phys; 2017 Feb; 146(7):074505. PubMed ID: 28228019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles equation of state and electronic properties of warm dense oxygen.
    Driver KP; Soubiran F; Zhang S; Militzer B
    J Chem Phys; 2015 Oct; 143(16):164507. PubMed ID: 26520527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path integral Monte Carlo simulations of warm dense aluminum.
    Driver KP; Soubiran F; Militzer B
    Phys Rev E; 2018 Jun; 97(6-1):063207. PubMed ID: 30011453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path integral Monte Carlo simulation of the low-density hydrogen plasma.
    Militzer B; Ceperley DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066404. PubMed ID: 11415232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas.
    Zhang S; Militzer B; Benedict LX; Soubiran F; Sterne PA; Driver KP
    J Chem Phys; 2018 Mar; 148(10):102318. PubMed ID: 29544329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium oxide at extreme temperatures and pressures studied with first-principles simulations.
    Soubiran F; González-Cataldo F; Driver KP; Zhang S; Militzer B
    J Chem Phys; 2019 Dec; 151(21):214104. PubMed ID: 31822088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path integral monte carlo calculation of the deuterium hugoniot.
    Militzer B; Ceperley DM
    Phys Rev Lett; 2000 Aug; 85(9):1890-3. PubMed ID: 10970640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles equation of state database for warm dense matter computation.
    Militzer B; González-Cataldo F; Zhang S; Driver KP; Soubiran F
    Phys Rev E; 2021 Jan; 103(1-1):013203. PubMed ID: 33601631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonideal mixing effects in warm dense matter studied with first-principles computer simulations.
    Militzer B; González-Cataldo F; Zhang S; Whitley HD; Swift DC; Millot M
    J Chem Phys; 2020 Nov; 153(18):184101. PubMed ID: 33187447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles simulations of warm dense lithium fluoride.
    Driver KP; Militzer B
    Phys Rev E; 2017 Apr; 95(4-1):043205. PubMed ID: 28505825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform electron gas at finite temperature by fermionic-path-integral Monte Carlo simulations.
    Filinov VS; Larkin AS; Levashov PR
    Phys Rev E; 2020 Sep; 102(3-1):033203. PubMed ID: 33075865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of a deuterium double shock Hugoniot from ab initio simulations.
    Militzer B; Ceperley DM; Kress JD; Johnson JD; Collins LA; Mazevet S
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):275502. PubMed ID: 11800891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited electron dynamics modeling of warm dense matter.
    Su JT; Goddard WA
    Phys Rev Lett; 2007 Nov; 99(18):185003. PubMed ID: 17995416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations.
    Hu SX; Gao R; Ding Y; Collins LA; Kress JD
    Phys Rev E; 2017 Apr; 95(4-1):043210. PubMed ID: 28505720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental investigation of the equation of state of boron plasmas.
    Zhang S; Militzer B; Gregor MC; Caspersen K; Yang LH; Gaffney J; Ogitsu T; Swift D; Lazicki A; Erskine D; London RA; Celliers PM; Nilsen J; Sterne PA; Whitley HD
    Phys Rev E; 2018 Aug; 98(2-1):023205. PubMed ID: 30253522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles equation of state and shock compression predictions of warm dense hydrocarbons.
    Zhang S; Driver KP; Soubiran F; Militzer B
    Phys Rev E; 2017 Jul; 96(1-1):013204. PubMed ID: 29347225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for Dissociation and Ionization in Shock Compressed Nitrogen to 800 GPa.
    Kim YJ; Militzer B; Boates B; Bonev S; Celliers PM; Collins GW; Driver KP; Fratanduono DE; Hamel S; Jeanloz R; Rygg JR; Swift DC; Eggert JH; Millot M
    Phys Rev Lett; 2022 Jul; 129(1):015701. PubMed ID: 35841582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions.
    Böhme M; Moldabekov ZA; Vorberger J; Dornheim T
    Phys Rev E; 2023 Jan; 107(1-2):015206. PubMed ID: 36797933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.