These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 26551219)
1. Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals. Yang J; Tang C; Wang F; Wu Y J Hazard Mater; 2016 Mar; 304():150-8. PubMed ID: 26551219 [TBL] [Abstract][Full Text] [Related]
2. Paddy periphyton reduced cadmium accumulation in rice (Oryza sativa) by removing and immobilizing cadmium from the water-soil interface. Lu H; Dong Y; Feng Y; Bai Y; Tang X; Li Y; Yang L; Liu J Environ Pollut; 2020 Jun; 261():114103. PubMed ID: 32066051 [TBL] [Abstract][Full Text] [Related]
3. Bioremediation of agricultural solid waste leachates with diverse species of Cu (II) and Cd (II) by periphyton. Yang J; Liu J; Wu C; Kerr PG; Wong PK; Wu Y Bioresour Technol; 2016 Dec; 221():214-221. PubMed ID: 27639674 [TBL] [Abstract][Full Text] [Related]
4. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage]. Xu C; Xia BC; Wu HN; Lin XF; Qiu RL Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348 [TBL] [Abstract][Full Text] [Related]
5. The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Lu H; Liu J; Kerr PG; Shao H; Wu Y Sci Total Environ; 2017 Feb; 578():74-80. PubMed ID: 27503628 [TBL] [Abstract][Full Text] [Related]
6. Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils. Guo Y; Cheng S; Fang H; Yang Y; Li Y; Zhou Y Sci Total Environ; 2022 Oct; 844():157119. PubMed ID: 35798114 [TBL] [Abstract][Full Text] [Related]
7. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam. Martinez RE; Marquez JE; Hòa HT; Gieré R Environ Sci Pollut Res Int; 2013 Nov; 20(11):7686-98. PubMed ID: 23990254 [TBL] [Abstract][Full Text] [Related]
8. Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil-rice system under intensive farming: a case study of Nanhu, China. Shi J; Yu X; Zhang M; Lu S; Wu W; Wu J; Xu J J Environ Qual; 2011; 40(6):1695-704. PubMed ID: 22031551 [TBL] [Abstract][Full Text] [Related]
9. Co-Amendment of S and Si Alleviates Cu Toxicity in Rice ( Lu Z; Yan X; Wei Z; Wu J Int J Environ Res Public Health; 2018 Dec; 16(1):. PubMed ID: 30587815 [TBL] [Abstract][Full Text] [Related]
10. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Jung MC; Thornton I Sci Total Environ; 1997 May; 198(2):105-21. PubMed ID: 9167264 [TBL] [Abstract][Full Text] [Related]
11. Copper and cadmium co-contamination affects soil bacterial taxonomic and functional attributes in paddy soils. Guo Y; Cheng S; Fang H; Yang Y; Li Y; Shi F; Zhou Y Environ Pollut; 2023 Jul; 329():121724. PubMed ID: 37105465 [TBL] [Abstract][Full Text] [Related]
12. Biosorption of high-concentration Cu (II) by periphytic biofilms and the development of a fiber periphyton bioreactor (FPBR). Liu J; Wang F; Wu W; Wan J; Yang J; Xiang S; Wu Y Bioresour Technol; 2018 Jan; 248(Pt B):127-134. PubMed ID: 28634126 [TBL] [Abstract][Full Text] [Related]
13. Soil properties and cultivars determine heavy metal accumulation in rice grain and cultivars respond differently to Cd stress. Li D; Wang L; Wang Y; Li H; Chen G Environ Sci Pollut Res Int; 2019 May; 26(14):14638-14648. PubMed ID: 30877541 [TBL] [Abstract][Full Text] [Related]
14. Increasement of Cd adsorption capacity of rice stubble from being alive until death in a modified rice-fish system. Luo W; Zhang N; Li Z; Xu Z; Wang D; Liao G; Pang G; Xu G; Wang Y; Huang X; Chen D; Zeng C; Du Z Ecotoxicol Environ Saf; 2021 Jan; 208():111441. PubMed ID: 33038726 [TBL] [Abstract][Full Text] [Related]
15. Phytoextraction by a high-Cd-accumulating rice: reduction of Cd content of soybean seeds. Murakami M; Ae N; Ishikawa S; Ibaraki T; Ito M Environ Sci Technol; 2008 Aug; 42(16):6167-72. PubMed ID: 18767682 [TBL] [Abstract][Full Text] [Related]
16. Divergent patterns of heavy metal accumulation in paddy fields affect the dietary safety of rice: a case study in Maoming City, China. Teng Q; Zhang D; Deng F; Du C; Luo F; Yang C Environ Sci Pollut Res Int; 2021 Oct; 28(38):53533-53543. PubMed ID: 34036492 [TBL] [Abstract][Full Text] [Related]
17. Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain. Murakami M; Nakagawa F; Ae N; Ito M; Arao T Environ Sci Technol; 2009 Aug; 43(15):5878-83. PubMed ID: 19731691 [TBL] [Abstract][Full Text] [Related]
18. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Fulda B; Voegelin A; Kretzschmar R Environ Sci Technol; 2013 Nov; 47(22):12775-83. PubMed ID: 24171446 [TBL] [Abstract][Full Text] [Related]
19. Copper and cadmium co-contamination increases the risk of nitrogen loss in red paddy soils. Guo Y; Cheng S; Fang H; Geng J; Li Y; Shi F; Wang H; Chen L; Zhou Y J Hazard Mater; 2024 Nov; 479():135626. PubMed ID: 39197279 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of copper and cadmium in soil-rice systems in terrace and lowland paddies of the Red River basin, Vietnam: the possible regulatory role of silicon. Bui ATK; Duong LT; Nguyen MN Environ Geochem Health; 2020 Nov; 42(11):3753-3764. PubMed ID: 32583130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]